1.Engineering the glycogen metabolism in cyanobacterial photosynthetic cell factories: a review.
Sini ZHENG ; Huili SUN ; Shaoming MAO ; Guodong LUAN ; Xuefeng LÜ
Chinese Journal of Biotechnology 2022;38(2):592-604
Cyanobacteria are important photosynthetic autotrophic microorganisms and are considered as one of the most promising microbial chassises for photosynthetic cell factories. Glycogen is the most important natural carbon sink of cyanobacteria, playing important roles in regulating its intracellular carbon distributions. In order to optimize the performances of cyanobacterial photosynthetic cell factories and drive more photosynthetic carbon flow toward the synthesis of desired metabolites, many strategies and approaches have been developed to manipulate the glycogen metabolism in cyanobacteria. However, the disturbances on glycogen metabolism usually cause complex effects on the physiology and metabolism of cyanobacterial cells. Moreover, the effects on synthesis efficiencies of different photosynthetic cell factories usually differ. In this manuscript, we summarized the recent progress on engineering cyanobacterial glycogen metabolism, analyzed and compared the physiological and metabolism effects caused by engineering glycogen metabolism in different cyanobacteria species, and prospected the future trends of this strategy on optimizing cyanobacterial photosynthetic cell factories.
Carbon/metabolism*
;
Carbon Dioxide/metabolism*
;
Cyanobacteria/metabolism*
;
Glycogen/metabolism*
;
Metabolic Engineering
;
Photosynthesis/physiology*
2.A Case of McArdle's Disease.
Sang Ik LEE ; Chang Won SONG ; Kyu Hyun PARK ; Sang Wook KIM
Journal of the Korean Neurological Association 1992;10(4):554-558
McArdle's disease is a disorder of carbohydrate metabolism, which is inhented as an autosomal recessive or occasionally an autosomal dominant trait. Hallmark of clinical features is exercise intolerence, I.e. muscle pain following strenuous exercise. Electrophysiologically insertion of an EMG needle shows that there is no electrical activity, differentiating this contracture from a muscle cramp. Histological examination of muscle biopsy specimen shows increase in glycogen and the presence of subsarcolemrnal blebs. We report a 23-year-old, male patient who presented clinical, electrophysiological, and histological findings compatible with McArdle's disease.
Biopsy
;
Blister
;
Carbohydrate Metabolism
;
Contracture
;
Glycogen
;
Glycogen Storage Disease Type V*
;
Humans
;
Male
;
Muscle Cramp
;
Myalgia
;
Needles
;
Young Adult
4.The role of glycogen synthase kinase-3 beta in the pathogenesis of liver ischemia reperfusion injury.
Feng REN ; Hai-yan ZHANG ; Zheng-fu PIAO ; Su-jun ZHENG ; Yu CHEN ; Zhi-ming WU ; Zhong-ping DUAN
Chinese Journal of Hepatology 2011;19(7):547-551
OBJECTIVETo investigate the role of the key intracellular signaling molecule glycogen synthase kinase-3 beta in the mechanism of liver ischemia reperfusion (IR).
METHODSC57BL/6 mice were subjected to 90 min warm liver cephalad lobe ischemia, followed by various length of reperfusion. Experiment groups included sham control group, liver IRI model group and glycogen synthase kinase-3 beta inhibitor-treated group (SB216763 in DMSO, 25 g/kg, i.p, 2 hour prior to the onset of liver ischemia). The expression of glycogen synthase kinase-3 beta protein was analysed by Western blotting. The serum ALT levels were determined to reflect the function of liver. The affected liver lobes were harvested for histology analysis. The inflammatory gene expression was detected by Quantitative PCR.
RESULTSBy western blot analysis, we found that ischemia itself activated glycogen synthase kinase-3 beta by a significant decrease of its phosphorylation. Glycogen synthase kinase-3 beta inhibitor SB216763-pretreatment ameliorated the liver damages significantly as compared to the controls (sALT: 2046+/-513 U/L vs 5809+/-1689 U/L, P = 0.0153), and suppressed the gene expressions of IL-12, TNFa, IL-1b and IL-6.
CONCLUSIONSThis study demonstrated that the ischemia process modulated liver innate immune activation via a GSK-3-dependent mechanism which favored the development of a pro-inflammation response and lead to liver tissue damages. GSK-3b may be a new therapeutic target to ameliorate liver IRI in transplant patients.
Animals ; Glycogen Synthase Kinase 3 ; metabolism ; Glycogen Synthase Kinase 3 beta ; Inflammation ; metabolism ; Liver ; metabolism ; pathology ; Male ; Mice ; Mice, Inbred C57BL ; Reperfusion Injury ; metabolism ; pathology
5.Effect of endotoxin pretreatment-induced glycogen synthase kinase-3 inhibition on glycogen metabolism in rat liver and the mechanism.
Xiaole CHEN ; Jianping GONG ; Faliang XU
Journal of Southern Medical University 2014;34(2):201-205
OBJECTIVETo investigate the changes in the functional activity of glycogen synthase kinase-3 (GSK-3) in the hepatic tissue after endotoxin (lipopolysaccharide, LPS) tolerance and explore the effects of LPS-induced GSK-3 inhibition on glycogen metabolism in the liver.
METHODSMale SD rats were randomly divided into normal control, endotoxin pretreatment and GSK-3 inhibitor (lithium chloride) groups with corresponding pretreatments prior to a large dose of LPS challenge (10 mg/kg) to induce liver injury. Glycogen deposition and content in the hepatic tissue was detected using periodic acid-Schiff (PAS) staining and a glycogen quantification kit, respectively. Western blotting was performed for semi-quantitative analysis of protein level and inhibitory phosphorylation of GSK-3, and a Coomassie brilliant blue G-250-based colorimetric assay was used to detect calpain activity in the liver.
RESULTSGlycogen content in the liver decreased significantly after LPS challenge in all the 3 groups (P<0.05) but showed no significant difference among the groups (P>0.05). Both LPS and lithium chloride pretreatments caused a significant increase of liver glycogen content (P<0.05). LPS pretreatment induced inhibitory phosphorylation of GSK-3β (P<0.05) and partial cleavage of GSK-3α but did not affect the expression of GSK-3 protein (P>0.05). Large-dose LPS challenge significantly increased the activity of calpain in the liver tissue (P<0.05) to a comparable level in the 3 groups (P>0.05).
CONCLUSIONEndotoxin pretreatment induces inhibitory phosphorylation of GSK-3β and partial cleavage of GSK-3α and promotes the deposition of liver glycogen but does not affect the activity of calpain, which may contribute to an increased glycogen reserve for energy supply in the event of large-dose LPS challenge.
Animals ; Calpain ; metabolism ; Glycogen ; metabolism ; Glycogen Synthase Kinase 3 ; antagonists & inhibitors ; metabolism ; Lipopolysaccharides ; adverse effects ; Lithium Chloride ; pharmacology ; Liver ; drug effects ; metabolism ; pathology ; Male ; Rats ; Rats, Sprague-Dawley
6.Effects of glycogen synthase kinase 3β overexpression in rat and glycogen synthase kinase 3β inhibitor SB-216763 on proliferation of hepatic oval cells.
Jun-qiao ZHONG ; Yuan-kang XIE ; Xiao-ke JI ; Jun-hui FU ; Yang WANG ; Qi-yu ZHANG ; Hong-qi SHI ; Yun-feng SHAN
Chinese Journal of Surgery 2012;50(11):1003-1006
OBJECTIVETo research the effects of glycogen synthase kinase (GSK3β) overexpression and GSK3β inhibitor SB-216763 on the proliferation of hepatic oval cells in rats and its regulatory mechanisms by Wnt signaling pathway.
METHODSThe hepatic oval cells WBF-344 were divided into the blank control group, GSK3β over-expression group, DMSO control group and GSK3β inhibitor groups, while the inhibitor groups set up three concentration gradients, that was 1, 5, 10 µmol/L. Using the GSK3β over-expression lentivirus, which had been identified correctly, and SB-216763 dealt with the cells WBF-344. The cells morphology of each group was observed under the phase contrast inverted microscope, and the expression of fluorescence in the lentivirus-transfected group was observed under the fluorescent microscope. The proliferation of each group cells was tested by CCK8 kits. The cells' apoptosis was detected by AnnexinV-FITC/PI kits. The expression of GSK3β, β-catenin and cyclin D1 were detected by Western blot.
RESULTSThe cells of GSK3β over-expression group were fewer and obvious aging. However, in each inhibitor added group, the cells' division and proliferation was vigorous, and the condition was good. Moreover, the cells' proliferation was getting stronger with the concentration of SB-216763 increasing. A large number of green fluorescence was expressed in the lentivirus-transfected cells. The cells' proliferation in GSK3β over-expression group restrained (t = 7.178, P < 0.01, as compared with control), while the cells' proliferation was vigorous in inhibitor groups (F = 45.030, P < 0.01, as compared with control). Flow Cytometry showed that the cells apoptosis was significant in GSK3β over-expression group. Western blot showed that the expression of GSK3β was increased, while the expression of β-catenin and cyclin D1 was decreased in the over-expression group. The expression of GSK3β had no significant difference among the control group and inhibitor groups. However, the expression of β-catenin and cyclin D1 was significantly increased with the concentration of SB-216763 increasing.
CONCLUSIONSThe overexpression of GSK3β can inhibit the Wnt signaling pathway, thus restrain the cells' proliferation and promotes apoptosis. SB-216763 can activate the Wnt pathway, thus promotes cells' proliferation.
Animals ; Cell Line ; Cell Proliferation ; drug effects ; Cyclin D1 ; metabolism ; Glycogen Synthase Kinase 3 ; metabolism ; Glycogen Synthase Kinase 3 beta ; Glycogen Synthase Kinases ; metabolism ; Hepatocytes ; drug effects ; Indoles ; pharmacology ; Male ; Maleimides ; pharmacology ; Rats ; Transfection ; Wnt Signaling Pathway ; beta Catenin ; metabolism
7.Butyrate acts as a G-protein-coupled receptor ligand that prevents high glucose-induced amyloidogenesis in N2a cells through the protein kinase B/glycogen synthase kinase-3β pathway.
Yujie XU ; Shufang SHAN ; Xiaoyu WANG ; Lingli LI ; Liang MA ; Jingyuan XIONG ; Ping FU ; Guo CHENG
Chinese Medical Journal 2023;136(19):2368-2370
8.Progress in the role of endometrial glucose metabolism in embryo implantation.
Yong-Dan MA ; Yi-Cheng WANG ; Li-Min YUE
Acta Physiologica Sinica 2022;74(2):255-264
The synthesis and decomposition of glycogen adjust the blood glucose dynamically to maintain the energy supply required by the cells. As the only hormone that lowers blood sugar in the body, insulin can promote glycogen synthesis by activating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway and increasing glucose transporter translocation, and inhibit gluconeogenesis to lower blood glucose. In the endometrium, glycogen metabolism is active, but gluconeogenesis does not occur. The glycogen metabolism in the endometrium is controlled not only by the classical glucose regulating hormones, but also by the ovarian hormones. The functional activities related to implantation of the endometrium during the implantation window require glucose as energy source. A large amount of glucose is used to synthesize glycogen in the endometrium before implantation, which could meet the increased energy demand for embryo implantation. In diabetes, glycogen metabolism in the endometrium is impaired, which frequently leads to implantation failure and early abortion. This article reviews the glycogen metabolism in the endometrium and discusses its role in embryo implantation, which provide new ideas for embryo implantation research and infertility treatment.
Blood Glucose/metabolism*
;
Embryo Implantation
;
Endometrium
;
Female
;
Glucose/metabolism*
;
Glycogen/metabolism*
;
Humans
;
Insulin/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Pregnancy
10.Curcumin induces apoptosis by PTEN/PI3K/AKT pathway in EC109 cells.
Xiu-juan LI ; Yu-zhen LI ; Chun-ting JIN ; Jie FAN ; Hai-jun LI
Chinese Journal of Applied Physiology 2015;31(2):174-177
OBJECTIVETo study the molecular mechanism of curcumin in human esophageal carcinoma cell line (EC109).
METHODSEC109 cells were cultivated in vitro. When 80%-90% confluence was reached, they were treated with curcumin in different concentrations (15-120 µmol/L). The effects on cell proliferation were examined by CCK-8 colorimetry. The ultrastructure of EC109 cells were detected with transmission electron microscope(TEM). The cells apoptosis was observed with laser confocal microscope(LCM) by AnnexinV-FITC/PI double staining. The proteins level of PTEN, AKT, GSK3β and Caspase 3 were tested by flow cytometry(FCM) .
RESULTSCCK-8 test showed that curcumin could inhibit the proliferation of EC109 cells in a time- and concentration-dependent manner. TEM and LCM examinations indicated that curcumin could make EC109 cells apoptosis. The data of FCM showed that curcumin could increase the expression of PTEN, GSK3β and Caspase 3, decreased the expression of AKT.
CONCLUSIONThe effects of curcumin on inhibiting proliferation and promoting apoptosis of EC109 cells were related with increased expression of PTEN and inhibition of PI3K/AKT signaling pathway.
Apoptosis ; Caspase 3 ; metabolism ; Cell Line, Tumor ; Cell Proliferation ; Curcumin ; pharmacology ; Esophageal Neoplasms ; metabolism ; Glycogen Synthase Kinase 3 ; metabolism ; Glycogen Synthase Kinase 3 beta ; Humans ; PTEN Phosphohydrolase ; metabolism ; Phosphatidylinositol 3-Kinases ; metabolism ; Proto-Oncogene Proteins c-akt ; metabolism ; Signal Transduction