1.Analysis of trimethylsilyl derivatization products of phosphatidylethanol by gas chromatography-mass spectrometry.
Chang Suek YON ; Joong Soo HAN
Experimental & Molecular Medicine 2000;32(4):243-245
For the detection of rare phospholipid, phosphatidylethanol (PEt), GC-MS analysis method was adopted for the detection of derivatization products of PEt by N,O-bis (trimethylsilyl) trifluroacetamide (BSTFA). A re-structured molecule derived from PEt, ethyl bis (trimethylsilyl)-phosphate was found from search of Wiley database. This molecule can be used as a marker for PEt analysis. The molecular formula was C8H23O4PSi2 and weight of the formula was 270.09.
Glycerophospholipids/*chemistry
;
Mass Fragmentography/*methods
;
Support, Non-U.S. Gov't
;
Trimethylsilyl Compounds/*chemistry
2.Lipidomic investigation of the protective effects of Polygonum perfoliatum against chemical liver injury in mice.
Lei PENG ; Hua-Guo CHEN ; Xin ZHOU
Journal of Integrative Medicine 2023;21(3):289-301
OBJECTIVE:
Recent investigations have demonstrated that Polygonum perfoliatum L. can protect against chemical liver injury, but the mechanism behind its efficacy is still unclear. Therefore, we studied the pharmacological mechanism at work in P. perfoliatum protection against chemical liver injury.
METHODS:
To evaluate the activity of P. perfoliatum against chemical liver injury, levels of alanine transaminase, lactic dehydrogenase, aspartate transaminase, superoxide dismutase, glutathione peroxidase and malondialdehyde were measured, alongside histological assessments of the liver, heart and kidney tissue. A nontargeted lipidomics strategy based on ultra-performance liquid chromatography quadrupole-orbitrap high-resolution mass spectrometry method was used to obtain the lipid profiles of mice with chemical liver injury and following treatment with P. perfoliatum; these profiles were used to understand the possible mechanisms behind P. perfoliatum's protective activity.
RESULTS:
Lipidomic studies indicated that P. perfoliatum protected against chemical liver injury, and the results were consistent between histological and physiological analyses. By comparing the profiles of liver lipids in model and control mice, we found that the levels of 89 lipids were significantly changed. In animals receiving P. perfoliatum treatment, the levels of 8 lipids were significantly improved, relative to the model animals. The results showed that P. perfoliatum extract could effectively reverse the chemical liver injury and significantly improve the abnormal liver lipid metabolism of mice with chemical liver injury, especially glycerophospholipid metabolism.
CONCLUSION
Regulation of enzyme activity related to the glycerophospholipid metabolism pathway may be involved in the mechanism of P. perfoliatum's protection against liver injury. Please cite this article as: Peng L, Chen HG, Zhou X. Lipidomic investigation of the protective effects of Polygonum perfoliatum against chemical liver injury in mice. J Integr Med. 2023; 21(3): 289-301.
Animals
;
Mice
;
Polygonum/chemistry*
;
Lipidomics
;
Liver
;
Lipids/pharmacology*
;
Glycerophospholipids/pharmacology*
;
Chemical and Drug Induced Liver Injury/metabolism*
3.Effect of tangshen formula on phospholipids metabolism in diabetic nephropathy patients.
Min HUANG ; Chao ZHU ; Qiong-Lin LIANG ; Ping LI ; Jing LI ; Yi-Ming WANG ; Guo-An LUO
Acta Pharmaceutica Sinica 2011;46(7):780-786
This study was to report the effect of Tangshen Formula on phospholipids metabolism in diabetic nephropathy patients. A normal phase-HPLC-TOF/MS method was used in this study for the determination of seven species of phospholipids in human plasma. Then, the concentration changes of potential phospholipids biomarkers were discussed in diabetic nephropathy phase III and phase IV patients among different groups, including before and 3, 6 months after administration of Tangshen Formula. Significant increases of PE750, PI885, PC792, PC826, PC830, PC854 and PC802 levels were observed 6 months after administration of Tangshen Formula and conventional western medicine, as well as a decrease of LPC540 level, when compared with those before medication. Concentrations of all the potential phospholipids biomarkers showed a tendency towards normal levels; however, both the improvement degree and onset time of these compounds were not same. Additionally, Tangshen Formula treatment based on conventional western medicine treatment was more efficient in adjusting the levels of these compounds when compared with western medicine treatment alone, especially for the phase IV patients. These results indicated that Tangshen Formula was capable in regulating and improving phospholipids metabolism in diabetic nephropathy patients, which may be related with the direct or indirect inhibition of protein kinase C pathway and the corresponding reduction of phospholipase A2 activity. Therefore, Tangshen Formula may be used as an effective drug for diabetic nephropathy therapy, at least as an adjunctive therapeutic drug.
Diabetic Nephropathies
;
blood
;
metabolism
;
Double-Blind Method
;
Drugs, Chinese Herbal
;
isolation & purification
;
pharmacology
;
Glycerophospholipids
;
blood
;
Humans
;
Lysophosphatidylcholines
;
blood
;
Phospholipases A2
;
metabolism
;
Phospholipids
;
blood
;
classification
;
Plants, Medicinal
;
chemistry
;
Protein Kinase C
;
metabolism
;
Signal Transduction
;
Sphingomyelins
;
blood