1.Interaction between Inorganic Mercury and Selenium on Tissue Sulfhydryl Groups and Glutathione-linked Enzymes in Rats.
Yonsei Medical Journal 1981;22(2):122-126
The effect of selenium on the tissue sulfhydryl group content and lipid peroxide-destorying enzyme system in the liver, kidney and testis of rat treated with mercury was investigated. The male rats were injected s.c. with HgCl2 (10 micromoles/kg BW) and orally received Na2SeO3 (13 micromoles/kg BW) simultaneously. After 3 days, liver, kidney and testis were removed and analyzed. Mercury decreased the total sulfhydryl group content in the kidney by 25% and the total glutathione content in the kidney and testis by 50% and 36%, respectively, with no changes in other tissues. There was 12% increase in the total sulfhydryl group but not in the total glutathione content in kidney by a simul-taneous treatment of Se and Hg. Glutathione peroxidase (GSH-Px) activities were decreased by 63% in the liver and 69% in the kidney, and glutathione reductase (GSH-Rd) activity was increased in the tests by 16% by the Hg treatment with no changes in Other tissues. Hg had no effect upon glutathione-S-transferase activities in all organs examined. Simultaneous Se treatment increased GSH-Rd activity in the kidney by 23% and GSH-Px activities in liver and kidney by 24% and 21%, respectively, compared to the Hg-treated group. These data indicate that the alleviation of Hg toxicity by Se treatment is well correlated with the protein sulfhydryl group content and GSH-Px activity.
Animal
;
Glutathione/metabolism*
;
Glutathione Peroxidase/analysis
;
Glutathione Reductase/analysis
;
Male
;
Mercury/toxicity*
;
Rats
;
Selenium/pharmacology*
;
Sulfhydryl Compounds/analysis*
2.Study on the correlation of the biochemical indexes in flouride workers.
Zhijun HUANG ; Kejun LI ; Gang HOU ; Zhenhe SHEN ; Cui WANG ; Kaiyou JIANG ; Xiaofang LUO
Chinese Journal of Industrial Hygiene and Occupational Diseases 2002;20(3):192-194
OBJECTIVETo explore the correlation among some biochemical indexes in the fluoride workers.
METHODSThe activities of superoxide dismutase(SOD), glutathione peroxidase (GSH-Px), catalase (CAT), alkaline phosphatase (AKP) and the level of calcitonin (CT), parathyroid hormone (PTH), IgG, IgA, IgM, Cu2+, Zn2+, Ca2+, Mg2+ and Se2+, F- in serum and in urine were measured in fifty male fluoride workers and fifty controls.
RESULTSThe levels of F-, CT, PTH, AKP and GSH-Px in serum and F- in urine in exposed group were significantly different from that in control group. Correlation analysis indicated that F- in urine and CAT(r = 0.3133, P < 0.05), CT and PTH(r = 0.5173, P < 0.01), Se2+ and CAT(r = 0.4354, P < 0.05) were positively correlated. There were significantly negative correlation between F- in serum and GSH-Px (r = -0.5202, P < 0.01) and positive correlation among Cu2+, Zn2+, Ca2+ and Mg2+ in serum.
CONCLUSION(1) Excess of fluoride may affect secretion of calcium adjusting hormone (CT, PTH); (2) Changes of AKP and GSH-Px may be regarded as health monitoring indexes; (3) The correlation of biochemical indexes plays an important role in studying the mechanism and the early prevention and treatment of industrial fluorosis.
Alkaline Phosphatase ; analysis ; Calcitonin ; analysis ; Catalase ; analysis ; Environmental Monitoring ; Fluorides ; toxicity ; Glutathione Peroxidase ; analysis ; Humans ; Male ; Occupational Exposure ; Parathyroid Hormone ; analysis ; Superoxide Dismutase ; analysis
3.Effect of p-Dimethylaminoazobenzene and 2(3)-tert-Butyl-4-hydroxyanisole on Lipid Pcroxidation, Glutathione-S-transferase, Peroxidase and Reductase in Rat Liver.
Yonsei Medical Journal 1981;22(2):95-100
An experiment was conducted in order to investigate the effect of p-dimethylaminoazobenzene (DAB) and 2(3)-tert-butyl-4-hydroxyanisole (BHA) on the lipid peroxidation and peroxide-destroying enzyme system in the rat liver. Dietary supplementation of DAB (0.06%) for three weeks caused the elevation of glutathione-S-transferase activity by 60% and glutathione reductase by 50%, but it decreased glutathione peroxidase and catalase activities significantly. Dietary supplementation of BHA (0.75%) also increased glutatione-S-transferase activity in the liver by 2 folds, and it counteracts DAB effect on the glutathione peroxidase and catalase activities. There was a marked increase in malon-dialdehyde content in the postnuclear fraction of liver by the treatment of DAB, but the addition of BHA lowered the malondialdehyde content to almost the control level. The protective effect of BHA on the lipid peroxidation induced by DAB administration at the enzyme level seems to be due to the induction of glutathione-S-transferase and the protection of glutathione peroxidase and catalase activities from being lowered by DAB administration.
Animal
;
Anisoles/pharmacology*
;
Butylated Hydroxyanisole/pharmacology*
;
Glutathione Peroxidase/analysis*
;
Glutathione Reductase/analysis*
;
Glutathione Transferase/analysis*
;
Lipid Peroxides/metabolism*
;
Liver/drug effects*
;
Liver/metabolism
;
Male
;
Peroxidases/analysis*
;
Rats
;
p-Dimethylaminoazobenzene/pharmacology*
4.DNA damage and changes of antioxidative enzymes in chronic benzene poisoning mice.
Hong-zhi PAN ; Li-xin NA ; Ling TAO
Chinese Journal of Industrial Hygiene and Occupational Diseases 2003;21(6):423-425
OBJECTIVETo study the damage effect of benzene on DNA and its mechanism and the changes of antioxidative enzymes in vivo.
METHODSDNA break in bone marrow cells and peripheral blood lymphocytes of mice exposed to benzene by 4 h static inhalation per day at different concentrations for two months were analyzed with single cell gel electrophoresis (SCGE). Meanwhile, the activity of SOD, GSH-Px and the level of MDA in liver, spleen and brain were detected.
RESULTSIn low and high dosage groups, the rate of DNA migration of bone marrow cells (83.56% +/- 10.28%, 92.54% +/- 15.93%) and peripheral blood lymphocytes (41.27% +/- 6.03%, 65.79% +/- 11.62%) were higher than those in control (4.13% +/- 0.52% and 2.21% +/- 0.31% respectively, P<0.05]. The activity of SOD in liver [(754.33 +/- 116.30), (694.26 +/- 116.30) U/mg pro] and GSH-Px [(22.52 +/- 3.31), (18.56 +/- 4.97) U/mg pro] were lower than those in control [(999.92 +/- 188.24) and (35.31 +/- 6.63) U/mg pro respectively, P<0.05, P<0.01]. But there was no significant difference between the two dosage groups. The activity of GSH-Px in spleen of both groups [(31.38 +/- 2.71), (25.30 +/- 7.44) U/mg pro] were lower than that of control [(37.11 +/- 3.42) U/mg pro, P<0.05] and there was significant difference between the two dosage groups. The activity of GSH-Px in brain of both groups [(5.70 +/- 0.84), (5.24 +/- 1.19) U/mg pro, P<0.05] were lower than that of control [(7.10 +/- 0.46) U/mg pro, P<0.05], but there was no significant difference between the two dosage groups. The level of MDA in brain of high dosage group [(3.99 +/- 1.15) nmol/mg pro] was higher than that of control [(2.58 +/- 0.53) nmol/mg pro, P<0.05].
CONCLUSIONChronic benzene poisoning may result in DNA break in bone marrow cells and peripheral blood lymphocytes and decrease in the activity of antioxidative enzymes.
Animals ; Benzene ; poisoning ; Chronic Disease ; DNA Damage ; Glutathione Peroxidase ; metabolism ; Male ; Malondialdehyde ; analysis ; Mice ; Superoxide Dismutase ; metabolism
5.Establishment of a mouse model of ovarian oxidative stress.
Xiaoning WANG ; Changjun ZHANG ; Ying ZHANG ; Xue RU ; Qinqin GONG
Journal of Southern Medical University 2012;32(11):1643-1645
OBJECTIVETo evaluate the feasibility of establishing a mouse model of ovarian oxidative stress by intraperitoneal injections of arsenic sodium.
METHODSTwenty adult female Kunming mice were randomized equally into the normal control group and ovarian oxidative stress model group for intraperitoneal injections of 0.5 ml distilled water and 8 mg/kg arsenic sodium solution every other day, respectively. After 8 injections, the mice were sacrificed for histological observation of the ovarian sections and enzyme-linked immunosorbent assay (ELISA) of serum estradiol (E(2)) and pregnenedione (P) levels ande contents of reactive oxygen species (ROS) , malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the ovary homogenate.
RESULTSNumerous atretic follicles were found in the ovaries of mice in the model group with obviously reduced growing follicles. Compared with those in the normal control group, the contents of ROS and MDA increased and SOD and GSH-Px levels in the ovarian homogenate decreased significantly in the model group (P<0.05).
CONCLUSIONA mouse model of ovarian oxidative stress can be established by intraperitoneal injections of arsenic sodium.
Animals ; Arsenites ; Disease Models, Animal ; Female ; Glutathione Peroxidase ; analysis ; Malondialdehyde ; analysis ; Mice ; Mice, Inbred Strains ; Ovary ; metabolism ; physiopathology ; Oxidative Stress ; Reactive Oxygen Species ; analysis ; Superoxide Dismutase ; analysis
6.Protective effect of ecdysterone on PC12 cells cytotoxicity induced by beta-amyloid25-35.
Su-fen YANG ; Zhong-jun WU ; Zheng-qin YANG ; Qin WU ; Qi-hai GONG ; Qi-xin ZHOU ; Jing-shan SHI
Chinese journal of integrative medicine 2005;11(4):293-296
OBJECTIVETo examine the protective effect of ecdysterone (ECR) against beta-amyloid peptide fragment(25-35) (Abeta(25-35))-induced PC12 cells cytotoxicity, and to further explore its mechanism.
METHODSExperimental PC12 cells were divided into the Abeta group (treated by Abeta(25-35) 100 micromol/L), the blank group (untreated), the positive control group (treated by Vit E 100 micromol/L after induction) and the ECR treated groups (treated by ECR with different concentrations of 1, 50 and 100 micromol/L). The damaged and survival condition of PC12 cells in various groups was monitored by lactate dehydrogenase (LDH) release and MTT assay. The content of malondialdehyde (MDA) was measured by fluorometric assay to indicate the lipid peroxidation. And the antioxidant enzymes activities in PC12 cells, including superoxide dismutases (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px), were detected respectively.
RESULTSAfter PC12 cells were treated with Abeta(25-35) (100 micromol/L) for 24 hrs, they revealed a great decrease in MTT absorbance and activity of antioxidant enzymes, including SOD, CAT and GSH-Px as well as a significant increase of LDH activity and MDA content in PC12 cells (P < 0.01). When the cells was pretreated with 1-100 micromol/L ECR for 24 hrs before Abeta(25-35) treatment, the above-mentioned cytotoxic effect of Abeta(25-35) could be significantly attenuated dose-dependently, for ECR 50 micromol/L, P < 0.05 and for ECR 100 micromol/L, P < 0.01. Moreover, ECR also showed significant inhibition on the Abeta(25-35) induced decrease of SOD and GSH-Px activity, but not on that of CAT.
CONCLUSIONECR could protect PC12 cells from cytotoxicity of Abeta(25-35), and the protective mechanism might be related to the increase of SOD and GSH-Px activities and the decrease of MDA resulting from the ECR-pretreatment.
Amyloid beta-Peptides ; toxicity ; Animals ; Catalase ; analysis ; Ecdysterone ; pharmacology ; Glutathione Peroxidase ; analysis ; L-Lactate Dehydrogenase ; analysis ; Malondialdehyde ; analysis ; PC12 Cells ; Peptide Fragments ; toxicity ; Rats
7.Biochemical Markers of Oxidative Stress in Saudi Women with Recurrent Miscarriage.
Hazem K GHNEIM ; Mashael M ALSHEBLY
Journal of Korean Medical Science 2016;31(1):98-105
This study was undertaken to investigate the antioxidant/oxidant status in recurrent miscarriage patients. Antioxidants including glutathione peroxidase (GPx), catalase (CAT), glutathione reductase (GR), reduced glutathione (GSH) and selenium (Se), as well as the oxidants hydrogen peroxide (H2O2), oxidised glutathione (GSSG) and lipid peroxidation were assayed in plasma, whole blood and placental tissue of non-pregnant women (NP), healthy pregnant women (HP), and recurrent miscarriage (RM) patients. Results indicated that all antioxidant activities and levels in plasma and whole blood of HP women were consistently moderately lower, and much more significantly lower in RM patients when both were compared to those seen in NP women (P<0.05 and P<0.001, respectively). Furthermore, whereas plasma antioxidant activities and levels were significantly lower in RM patients, those of whole blood and placental tissue were much more significantly lower when compared with HP women (P<0.001). Concurrent with these findings there were consistent increases of equal statistical significance and magnitude in the levels of all investigated oxidants assayed in all samples when compared in between subjects of the study as indicated above. Data thus illustrated a distinct shift in favor of oxidative reactions and reactive oxygen species (ROS) generation, and very significant decreases in the GSH/GSSG ratios in whole blood and placental tissue of RM patients when compared to HP and NP women (P<0.001). The above noted oxidative stress could have been a major causative factor of recurrent miscarriage.
Abortion, Habitual/*blood/*epidemiology
;
Adult
;
Antioxidants/analysis
;
Biomarkers/*blood
;
Catalase/blood
;
Female
;
Glutathione/blood
;
Glutathione Peroxidase/blood
;
Glutathione Reductase/blood
;
Humans
;
Hydrogen Peroxide/analysis
;
Lipid Peroxidation
;
*Oxidative Stress
;
Placenta/metabolism
;
Pregnancy
;
Reactive Oxygen Species/metabolism
;
Saudi Arabia/epidemiology
;
Selenium/blood
8.Observation on the protective effect of hyperoxia solution on the acute lung injury caused by phosgene poisoning..
Ling WANG ; Li-xian XU ; Chun-xu HAI ; Shi-rong TANG ; Xu-ju QIN
Chinese Journal of Industrial Hygiene and Occupational Diseases 2005;23(1):20-23
OBJECTIVETo study the protective effect of hyperoxia solution on acute lung injury caused by phosgene poisoning by observing the changes of PaO2 and malondialdehyde (MDA) contents, superoxide dismutase (SOD) activity in serum and Glutathione (GSH/GSSG) contents in lung tissues.
METHODSThe rabbits were divided into normal control group, hyperoxia solution (H0) and balance salt (BS) groups. Group HO and Group BS inhaled phosgene and the former was given intravenously hyperoxia solution (which was replaced by balance salt solution in Group BS). The content of MDA and the activity of SOD in serum were observed at different time points, the amount of GSH and GSSG in lung tissue were also measured.
RESULTS(1) The serum MDA contents increased and PaO2, SOD activity decreased significantly in Group HO and Group BS along with time increasing as compared with control group. The contents of GSH in lung tissue decreased in two groups compared with that in control group, however the contents of GSSG ascended instead. (2) At 3 and 8 h of the experiment, PaO2 of Group HO [(9.91 +/- 0.49), (9.15 +/- 0.46) mm Hg respectively] were significantly higher than those of Group BS [(9.03 +/- 0.76), (8.11 +/- 0.57) mm Hg respectively] (P < 0.01). The contents of MDA of Group HO (3.66 +/- 0.35), (5.31 +/- 0.15) micromol/L respectively] were lower than those of Group BS [(4.32 +/- 0.26), (7.4 +/- 0.33) micromol/L respectively] (P < 0.01). SOD activity in Group HO [(237.37 +/- 29.96), (208.10 +/- 18.80) NU/ml respectively] were higher than those of Group BS [(195.02 +/- 21.44), (144.87 +/- 21.26) NU/ml respectively] (P < 0.05 or P < 0.01). The content of GSSG lung tissue in Group HO (423.67 +/- 38.21) micromol/L were lower than those of Group BS (523.85 +/- 43.14) mol/L (P < 0.01). There were no significant differences in the content of GSH in lung tissues between Group HO and group BS.
CONCLUSIONHyperoxia solution can reduce acute lung injury of rabbits following phosgene poisoning.
Acute Lung Injury ; etiology ; metabolism ; pathology ; Animals ; Glutathione Peroxidase ; metabolism ; Hyperoxia ; Lung ; drug effects ; metabolism ; pathology ; Malondialdehyde ; analysis ; Oxygen ; administration & dosage ; pharmacology ; Phosgene ; poisoning ; Rabbits ; Superoxide Dismutase ; metabolism
9.Effects of noise on antioxidant enzymes of cochlea in guinea pigs.
Fen-xia HOU ; Sheng WANG ; Yin-yan HU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2003;21(2):121-123
OBJECTIVETo investigate the effect of noise on the antioxidant enzymes of cochleae.
METHODS16 male pigmented guinea pigs (250 - 300 g) were randomly divided into 2 groups, control group and noise group. Each group had 8 animals. The animals in noise group were performed auditory evoked brainstem responses (ABR) recording before and after exposure to a continuous noise (4 kHz, octave band, 100 dB, SPL) 8 h/d for 3 consecutive days. Immediately at the end of the third day's noise exposure after ABR recording, guinea pigs were decapitated. Both the right and the left cochlea with the bony capsule removed were homogenized, and the supernatants were prepared for assays. Reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) were measured.
RESULTSROS level of the noise group [(281.2 +/- 3.5) U/mg pro] was significantly higher than that of the control group [(273.0 +/- 3.2) U/mg pro, P < 0.05] and SOD, CAT and GSH-Px activities of the noise group [(206.5 +/- 5.1) NU/mg pro, (47.0 +/- 9.0) U/g pro, (14.1 +/- 2.5) U/mg pro respectively] were significantly lower than that of the control group [(221.8 +/- 4.8) NU/mg pro, (60.8 +/- 9.9) U/g pro, (21.1 +/- 3.1) U/mg pro respectively, P < 0.05].
CONCLUSIONNoise may damage the defensive system of antioxidant enzymes in cochlea.
Animals ; Antioxidants ; analysis ; pharmacology ; Catalase ; metabolism ; Cochlea ; enzymology ; Evoked Potentials, Auditory, Brain Stem ; Glutathione Peroxidase ; metabolism ; Guinea Pigs ; Male ; Noise ; adverse effects ; Superoxide Dismutase ; metabolism
10.Association of red blood cell damage with arachidonic acid.
Tao YUAN ; Jian-ning ZHAO ; Jia MENG ; Yu CONG ; Shuang-shuang CHEN ; Ni-rong BAO
China Journal of Orthopaedics and Traumatology 2016;29(2):179-183
OBJECTIVETo study the correlation between arachidonic acid (AA) and acute red blood cells damage in rats, and to build a model with hidden blood loss in vivo, and to explore the pathological mechenism of hidden blood loss.
METHODSA total of 50 male adult Sprague-Dawley rats weighing (200 ± 20) g were randomly divided into five groups (n = 10): control group and four experimental groups. The rats in the experimental groups were given 0.5 ml different concentrations of AA dilu- ents, 5, 10, 20, 40 mmol/L respectively. The blood samples were collected from orbital venous at the beginning and 24, 48, 72 hours after administration. Then the changes of hemoglobin (Hb) ,red blood cell count (RBC), glutathione peroxidase (GSH- PX) activity, total superoxide dismutase (T-SOD) activity and hydrogen peroxide (H202) in the blood samples were tested.
RESULTSSignificant hidden blood loss occurred when the concentration was 10 mmol/L in the experimental group, with the RBC and Hb sharply reduced in blood samples. The Hb and RBC were reduced in all the experimental groups and control group at 24 hours after administration, while in the experimental groups they changed more obviously. The GSH-PX activity, T-SOD activity and H₂O₂were also significantly reduced in all groups, and the changes showed significant differences. The Hb and RBC were relatively stable in the control group and the experimental groups at 48 hours after administration; while GSH-PX activity, T-SOD activity and H₂O₂were all significantly decreased, and the changes in the experimental groups were more notable.
CONCLUSIONElevated levels of AA in the blood causes oxidative stress in the red blood cells, leading to the damage of red blood cells and hemoglobin, which is responsible for hidden blood loss.
Animals ; Arachidonic Acid ; toxicity ; Erythrocytes ; drug effects ; metabolism ; Glutathione Peroxidase ; blood ; Hemoglobins ; analysis ; Male ; Rats ; Rats, Sprague-Dawley ; Superoxide Dismutase ; blood