1.Effects of vitamin C on antioxidant function of testis in cadmium-loaded mice.
Jian ZHOU ; Hao QIN ; Xiao-Hong LI ; Yong-Hui WANG
Chinese Journal of Applied Physiology 2022;38(3):233-237
Objective: To investigate the effects of cadmium (Cd) on antioxidant enzymes in testis of mice and the protective effect of vitamin C (VC). Methods: A total of 72 male Kunming mice of clean grade were divided into four groups (n=18): the control group, the Cd group (CdCl2 3 mg/kg), the VC group (200 mg/kg), and the VC (200 mg/kg) +Cd group (CdCl2 3 mg/kg). Mice were poisoned once a day, exposed for 1 and 3 days and were treated with VC at the same time. Twenty-four hours after exposure on the 1st and 3rd day, half of the mice in each group were weighed, the serum and testis tissues were collected. Testicular organ coefficient, malondialdehyde (MDA) and superoxide dismutase (SOD) in serum and testis tissues, and glutathione peroxidase (GSH-Px), reduced glutathione (GSH), oxidized glutathione (GSSG) and total glutathione (T-GSH) in testis tissues were detected. Results: Compared with the control group, the body weight and testicle organ coefficient of mice in the Cd group were decreased on the 1st and 3rd day; after 3 days of exposure, the serum SOD in the Cd group was decreased significantly and MDA was increased significantly (P<0.05); the levels of SOD, GSH-Px, T-GSH and GSH/GSSG of testis in the Cd group were increased significantly on the 1st day (P<0.05), while all the above indexes were decreased significantly on the 3rd day (P<0.05), and the content of MDA was increased significantly on the 1st and 3rd days in the Cd group (P<0.05); after VC treatment, the degree of reduction was decreased. Compared with the Cd group, the serum SOD and MDA levels in the VC+ Cd group were significantly different after 3 days of exposure (P<0.05); the changes of SOD, GSH-Px, T-GSH and GSH/GSSG levels of the testis in the VC+ Cd group were significantly different on the 1st and 3rd day of exposure (P<0.05), and the MDA level of the testis in the VC+ Cd group was decreased significantly on the 3rd day of exposure (P<0.05). Compared with the Cd group for 1 day, the level of serum SOD exposed for 3 days was decreased significantly (P<0.05), and the changes of testis indexes were also significantly different (P<0.05). Conclusion: VC treatment can improve the antioxidant function of cadmium-loaded mice to some extent, and has protective effect on oxidative damage of testis.
Animals
;
Antioxidants/pharmacology*
;
Ascorbic Acid/pharmacology*
;
Cadmium/toxicity*
;
Glutathione
;
Glutathione Disulfide/pharmacology*
;
Glutathione Peroxidase
;
Male
;
Superoxide Dismutase
;
Testis
2.Interaction between Inorganic Mercury and Selenium on Tissue Sulfhydryl Groups and Glutathione-linked Enzymes in Rats.
Yonsei Medical Journal 1981;22(2):122-126
The effect of selenium on the tissue sulfhydryl group content and lipid peroxide-destorying enzyme system in the liver, kidney and testis of rat treated with mercury was investigated. The male rats were injected s.c. with HgCl2 (10 micromoles/kg BW) and orally received Na2SeO3 (13 micromoles/kg BW) simultaneously. After 3 days, liver, kidney and testis were removed and analyzed. Mercury decreased the total sulfhydryl group content in the kidney by 25% and the total glutathione content in the kidney and testis by 50% and 36%, respectively, with no changes in other tissues. There was 12% increase in the total sulfhydryl group but not in the total glutathione content in kidney by a simul-taneous treatment of Se and Hg. Glutathione peroxidase (GSH-Px) activities were decreased by 63% in the liver and 69% in the kidney, and glutathione reductase (GSH-Rd) activity was increased in the tests by 16% by the Hg treatment with no changes in Other tissues. Hg had no effect upon glutathione-S-transferase activities in all organs examined. Simultaneous Se treatment increased GSH-Rd activity in the kidney by 23% and GSH-Px activities in liver and kidney by 24% and 21%, respectively, compared to the Hg-treated group. These data indicate that the alleviation of Hg toxicity by Se treatment is well correlated with the protein sulfhydryl group content and GSH-Px activity.
Animal
;
Glutathione/metabolism*
;
Glutathione Peroxidase/analysis
;
Glutathione Reductase/analysis
;
Male
;
Mercury/toxicity*
;
Rats
;
Selenium/pharmacology*
;
Sulfhydryl Compounds/analysis*
3.Polysaccharide isolated from wax apple suppresses ethyl carbamate-induced oxidative damage in human hepatocytes.
Tao BAO ; Naymul KARIM ; Huihui KE ; Jitbanjong TANGPONG ; Wei CHEN
Journal of Zhejiang University. Science. B 2023;24(7):574-586
Wax apple (Syzygium samarangense) has received growing research interest for its high nutritional and medicinal value due to its constituents such as polysaccharide, organic acids, flavonoids, minerals, and other substances. In this study, wax apple polysaccharide (WAP) was isolated from this plant and its protective effect against ethyl carbamate (EC)-induced oxidative damage was evaluated in human hepatocytes (L02 cells). Firstly, a series of analyses such as high-performance liquid chromatography (HPLC), high-performance gel permeation chromatography (HPGPC), Fourier transform infrared spectroscopy (FT-IR), gas chromatography/mass spectrometry (GC/MS), and 1H and 13C nuclear magnetic resonance (NMR) were conducted to identify the structure of WAP. Thereafter, in vitro cell experiments were performed to verify the protective effects of WAP against EC-induced cytotoxicity, genotoxicity, and oxidative damage in L02 cells. Our results revealed that WAP is composed of mannose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, arabinose, and fucose in a molar ratio of 2.20:3.94:4.45:8.56:8.86:30.82:39.78:1.48. Using a combination of methylation and NMR spectroscopic analysis, the primary structure of WAP was identified as Araf-(1→, Glcp-(1→, →2)-Araf-(1→, →3)-Galp-(1→, →3)-Araf-(1→, and →6)-Galp-(1→. Cell experiments indicated that WAP exhibited significant protective effects on EC-treated L02 cells via suppressing cytotoxicity and genotoxicity, reducing reactive oxygen species (ROS) and O2•- formation, as well as improving mitochondrial membrane potential (MMP) and glutathione (GSH). In a nutshell, WAP has the potential as an important therapeutic agent or supplement for hepatic oxidative damage. Meanwhile, further studies are needed to prove the above effects in vivo at the biological and clinical levels.
Humans
;
Syzygium/chemistry*
;
Urethane/pharmacology*
;
Spectroscopy, Fourier Transform Infrared
;
Oxidative Stress
;
Glutathione/pharmacology*
;
Hepatocytes
;
Polysaccharides/pharmacology*
4.Antioxidant Effects of Sulfur-Containing Amino Acids.
Yonsei Medical Journal 2004;45(5):776-788
Sulfur is an essential element for the entire biological kingdom because of its incorporation into amino acids, proteins and other biomolecules. Sulfur atoms are also important in the iron-containing flavoenzymes. Unlike humans, plants can use inorganic sulfur to synthesize sulfur-containing amino acids. Therefore, plants are an important source of sulfur for humans. Sulfur-containing compounds are found in all body cells and are indispensable for life. Some of sulfur-containing antioxidant compounds are, cysteine, methionine, taurine, glutathione, lipoic acid, mercaptopropionylglycine, N-acetylcysteine, and the three major organosulfur compounds of garlic oil, diallylsulfide, diallyldisulfide and diallyltrisulfide. In a comparison of the structure-function relationship among these sulfur-containing antioxidant compounds, dihydrolipoic acid (the reduced form of LA) is the most effective antioxidant. Dihydrolipoic acid contains two sulfhydryl groups and can undergo further oxidation reaction to form lipoic acid. The antioxidative activities of sulfur-containing compounds follow a general trend, the more highly reduced forms are stronger antioxidants and the number of sulfur atoms determine, at least in part, their modulatory activites on the glutathione related antioxidant enzymes. In this article, the antioxidant effects and the antioxidative activities, of sulfur-containing amino acids, are reviewed. In addition, the general antioxidant effects and the structure-function relationship of some sulfur-containing compounds are also reviewed.
Acetylcysteine/pharmacology
;
Amino Acids, Sulfur/*pharmacology
;
Antioxidants/*pharmacology
;
Cysteine/pharmacology
;
Glutathione/pharmacology
;
Methionine/pharmacology
;
Structure-Activity Relationship
;
Taurine/pharmacology
;
Thioctic Acid/pharmacology
;
Thiopronine/pharmacology
5.Effects of propiconazole on physiological and biochemical properties of Panax notoginseng and dietary risk assessment.
Zi-Xiu ZHENG ; Li-Sha QIU ; Kai ZHENG ; Lan-Ping GUO ; Xiu-Ming CUI ; Hong-Juan NIAN ; Ying-Cai LI ; Shao-Jun HUANG ; Ye YANG
China Journal of Chinese Materia Medica 2023;48(5):1203-1211
To study the residue and dietary risk of propiconazole in Panax notoginseng and the effects on physiological and bioche-mical properties of P. notoginseng, we conducted foliar spraying of propiconazole on P. notoginseng in pot experiments. The physiolo-gical and biochemical properties studied included leaf damage, osmoregulatory substance content, antioxidant enzyme system, non-enzymatic system, and saponin content in the main root. The results showed that at the same application concentration, the residual amount of propiconazole in each part of P. notoginseng increased with the increase in the times of application and decreased with the extension of harvest interval. After one-time application of propiconazole according to the recommended dose(132 g·hm~(-2)) for P. ginseng, the half-life was 11.37-13.67 days. After 1-2 times of application in P. notoginseng, propiconazole had a low risk of dietary intake and safety threat to the population. The propiconazole treatment at the recommended concentration and above significantly increased the malondialdehyde(MDA) content, relative conductivity, and osmoregulatory substances and caused the accumulation of reactive oxygen species in P. notoginseng leaves. The propiconazole treatment at half(66 g·hm~(-2)) of the recommended dose for P. ginseng significantly increased the activities of superoxide dismutase(SOD), peroxidase(POD), and catalase(CAT) in P. notoginseng leaves. The propiconazole treatment at 132 g·hm~(-2) above inhibited the activities of glutathione reductase(GR) and glutathione S-transferase(GST), thereby reducing glutathione(GSH) content. Proconazole treatment changed the proportion of 5 main saponins in the main root of P. notoginseng. The treatment with 66 g·hm~(-2) propiconazole promoted the accumulation of saponins, while that with 132 g·hm~(-2) and above propiconazole significantly inhibited the accumulation of saponins. In summary, using propiconazole at 132 g·hm~(-2) to prevent and treat P. notoginseng diseases will cause stress on P. notoginseng, while propiconazole treatment at 66 g·hm~(-2) will not cause stress on P. notoginseng but promote the accumulation of saponins. The effect of propiconazole on P. notoginseng diseases remains to be studied.
Panax notoginseng/chemistry*
;
Panax
;
Antioxidants/pharmacology*
;
Saponins/pharmacology*
;
Glutathione
;
Risk Assessment
6.Scavenging activity and mechanism study of ferulic acid against reactive carbonyl species acrolein.
Zhi-Hao TAO ; Chang LI ; Xiao-Fei XU ; Yuan-Jiang PAN
Journal of Zhejiang University. Science. B 2019;20(11):868-876
Acrolein, known as one of the most common reactive carbonyl species, is a toxic small molecule affecting human health in daily life. This study is focused on the scavenging abilities and mechanism of ferulic acid and some other phenolic acids against acrolein. Among the 13 phenolic compounds investigated, ferulic acid was found to have the highest efficiency in scavenging acrolein under physiological conditions. Ferulic acid remained at (3.04±1.89)% and acrolein remained at (29.51±4.44)% after being incubated with each other for 24 h. The molecular mechanism of the detoxifying process was also studied. Detoxifying products, namely 2-methoxy-4-vinylphenol (product 21) and 5-(4-hydroxy-3-methoxyphenyl)pent-4-enal (product 22), were identified though nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC-MS), after the scavenging process. Ferulic acid showed significant activity in scavenging acrolein under physiological conditions. This study indicates a new method for inhibiting damage from acrolein.
Acrolein/toxicity*
;
Coumaric Acids/pharmacology*
;
Glutathione/physiology*
;
Hydroxybenzoates/pharmacology*
;
Magnetic Resonance Spectroscopy
;
Structure-Activity Relationship
7.Effect of p-Dimethylaminoazobenzene and 2(3)-tert-Butyl-4-hydroxyanisole on Lipid Pcroxidation, Glutathione-S-transferase, Peroxidase and Reductase in Rat Liver.
Yonsei Medical Journal 1981;22(2):95-100
An experiment was conducted in order to investigate the effect of p-dimethylaminoazobenzene (DAB) and 2(3)-tert-butyl-4-hydroxyanisole (BHA) on the lipid peroxidation and peroxide-destroying enzyme system in the rat liver. Dietary supplementation of DAB (0.06%) for three weeks caused the elevation of glutathione-S-transferase activity by 60% and glutathione reductase by 50%, but it decreased glutathione peroxidase and catalase activities significantly. Dietary supplementation of BHA (0.75%) also increased glutatione-S-transferase activity in the liver by 2 folds, and it counteracts DAB effect on the glutathione peroxidase and catalase activities. There was a marked increase in malon-dialdehyde content in the postnuclear fraction of liver by the treatment of DAB, but the addition of BHA lowered the malondialdehyde content to almost the control level. The protective effect of BHA on the lipid peroxidation induced by DAB administration at the enzyme level seems to be due to the induction of glutathione-S-transferase and the protection of glutathione peroxidase and catalase activities from being lowered by DAB administration.
Animal
;
Anisoles/pharmacology*
;
Butylated Hydroxyanisole/pharmacology*
;
Glutathione Peroxidase/analysis*
;
Glutathione Reductase/analysis*
;
Glutathione Transferase/analysis*
;
Lipid Peroxides/metabolism*
;
Liver/drug effects*
;
Liver/metabolism
;
Male
;
Peroxidases/analysis*
;
Rats
;
p-Dimethylaminoazobenzene/pharmacology*
8.Antioxidative effect of fullerenol on goat epididymal spermatozoa.
M Arul MURUGAN ; Bindu GANGADHARAN ; P P MATHUR
Asian Journal of Andrology 2002;4(2):149-152
AIMTo evaluate the effect of fullerenol on the antioxidant system of goat epididymal sperm.
METHODSFresh epididymides of adult goats were obtained from local slaughter houses and sperm were collected by chopping the epididymis in modified Ringer's phosphate solution (RPS medium). After several washings the sperm samples were equally dispersed in RPS medium and incubated with fullerenol (1, 10 and 100 micromol) and FeSO(4)/ascorbate (40/200 micromol) with or without fullerenol (1, 10 and 100 micromol) for 3 h at 32 degree C. After incubation, an aliquot of sperm samples were homogenized and centrifuged and the supernatant used for biochemical studies.
RESULTSIn FeSO(4)/ascorbate-incubated samples, the activities of antioxidant enzymes, superoxide dismutase, glutathione peroxidase and glutathione reductase, were decreased while lipid peroxidation increased as compared to the control sperm samples. In fullerenol-incubated sperm samples, the activities of superoxide dismutase, glutathione peroxidase and glutathione reductase were increased while lipid peroxidation was decreased in a dose-dependent manner. Co-incubation of sperm with fullerenol (1,10 and 100 micromol) and FeSO(4)/ascorbate (40/200 micromol) increased the activities of antioxidant enzymes and prevented the iron-induced elevation of lipid peroxidation in a dose-dependent manner.
CONCLUSIONFullerenol reduces iron-induced oxidative stress in epididymal sperm of goat by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation.
Animals ; Antioxidants ; pharmacology ; Epididymis ; Fullerenes ; pharmacology ; Glutathione Peroxidase ; metabolism ; Glutathione Reductase ; metabolism ; Goats ; In Vitro Techniques ; Lipid Peroxidation ; Male ; Spermatozoa ; drug effects ; physiology ; Superoxide Dismutase ; metabolism
9.Redifferentiation of human gastric cancer cells induced by ascorbic acid and sodium selenite.
Qiu-Sheng ZHENG ; Xi-Ling SUN ; Chang-Hai WANG
Biomedical and Environmental Sciences 2002;15(3):223-232
OBJECTIVETo explore the effects and mechanisms of ascorbic acid (AA) and sodium selenite (SS) on growth inhibition and redifferentiation in human gastric cancer cells.
METHODSIn the present study, trypan blue dye exclusion method was used to determine the cell growth curve and mitotic index, cell electrophoresis and colonogenic potential were used as the indexes of redifferentiation. In order to find out the mechanisms of redifferentiation, the activities of superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase (CAT) were assayed, the content of malondialdehyde (MDA), reduced glutathione (GSH) and H2O2 were evaluated.
RESULTSAfter treatment with AA 3 mol/L + SS 2 mu mol/L, the growth rate and mitotic index of human gastric cancer cells (MGc-803) decreased remarkably. The indexes related with cell malignancy were alleviated. For example, cell surface charge was obviously decreased, the electrophoresis rate was dropped from 2.21 to 1.15 mu m.s-1.V-1.cm-1. The indexes related with cell redifferentiation were promoted. For example, the colonogenic potential was decreased to 93.5%. These results indicated that redifferentiation of human gastric cancer cells was successfully induced by AA + SS. The activities of SOD and GPX were significantly higher, while the activity of CAT was slower in treated group than that in the control. The content of MDA was slightly decreased, GSH was sharply decreased, and H2O2 content was dramatically increased.
CONCLUSIONThese results indicated that combination of ascorbic acid and sodium selenite may induce the redifferentiation of human gastric cancer cells and inhibit cell growth by virtue of enhancing the activities of antioxidative enzymes and inducing the formation of H2O2, and altering the cell redox status. Combination of ascorbic acid and sodium selenite may be a potent anticancer agent for human gastric cancer.
Antioxidants ; pharmacology ; Ascorbic Acid ; pharmacology ; Catalase ; pharmacology ; Cell Differentiation ; Glutathione Peroxidase ; pharmacology ; Humans ; Mitotic Index ; Sodium Selenite ; pharmacology ; Stomach Neoplasms ; pathology ; Superoxide Dismutase ; pharmacology ; Tumor Cells, Cultured
10.Silver nanoparticles-resistance of HeLa cell associated with its unusually high concentration of α-ketoglutarate and glutathione.
Heming CHEN ; Yujing HE ; Xueqing CHEN ; Fuchang DENG ; Zhisong LU ; Yingshuai LIU ; Huamao DU
Chinese Journal of Biotechnology 2023;39(10):4189-4203
Silver nanoparticles (AgNPs) is known as one of the most valuable metal nanoparticles in antibacterial and anticancer application. AgNPs-resistant bacteria has been documented, but it is unclear whether cancer cells can also escape the anti-cancer effect of AgNPs. In this study, we aimed to investigate this phenomenon and its underlying mechanism. The antibacterial activity and cytotoxicity of AgNPs were measured in the presence of HeLa cell metabolites. The status of AgNPs in the system associated with metabolites were characterized by UV-Vis, Zetasizer Nano ZS, and transmission electron microscopy. Non-targeted metabolomics was used to reveal the metabolites components that bind with AgNPs. HeLa cells were injected intraperitoneally to establish the tumor-bearing mice model, and the stability of AgNPs in mice serum was analyzed. The results manifested that HeLa cell metabolites inhibited the anticancer and antibacterial effects of AgNPs in a dose-dependent manner by causing AgNPs aggregation. Effective metabolites that inhibited the biological activity of AgNPs were stable in 100 ℃, insoluble in chloroform, containing sulfur elements, and had a molecular weight less than 1 kDa in molecular weight. There were 115 compounds bound with AgNPs. In vitro experiments showed that AgNPs aggregation occurred only when the concentration of α-ketoglutarate (AKG) and glutathione (GSH) together reached a certain threshold. Interestingly, the concentration of AKG and GSH in HeLa cellular metabolites was 10 and 6 times higher than that in normal cervical epithelial cells, respectively, which explained why the threshold was reached. Furthermore, the stability of AgNPs in the serum of tumor-bearing mice decreased by 20% (P < 0.05) compared with the healthy mice. In conclusion, our study demonstrates that HeLa cells escaped the anti-cancer effect of AgNPs through the synergistic effect of AKG and GSH, suggesting the need to develop strategies to overcome this limitation.
Humans
;
Animals
;
Mice
;
HeLa Cells
;
Silver/pharmacology*
;
Ketoglutaric Acids/pharmacology*
;
Metal Nanoparticles
;
Anti-Bacterial Agents/pharmacology*
;
Glutathione
;
Microbial Sensitivity Tests