1.Interaction between Inorganic Mercury and Selenium on Tissue Sulfhydryl Groups and Glutathione-linked Enzymes in Rats.
Yonsei Medical Journal 1981;22(2):122-126
The effect of selenium on the tissue sulfhydryl group content and lipid peroxide-destorying enzyme system in the liver, kidney and testis of rat treated with mercury was investigated. The male rats were injected s.c. with HgCl2 (10 micromoles/kg BW) and orally received Na2SeO3 (13 micromoles/kg BW) simultaneously. After 3 days, liver, kidney and testis were removed and analyzed. Mercury decreased the total sulfhydryl group content in the kidney by 25% and the total glutathione content in the kidney and testis by 50% and 36%, respectively, with no changes in other tissues. There was 12% increase in the total sulfhydryl group but not in the total glutathione content in kidney by a simul-taneous treatment of Se and Hg. Glutathione peroxidase (GSH-Px) activities were decreased by 63% in the liver and 69% in the kidney, and glutathione reductase (GSH-Rd) activity was increased in the tests by 16% by the Hg treatment with no changes in Other tissues. Hg had no effect upon glutathione-S-transferase activities in all organs examined. Simultaneous Se treatment increased GSH-Rd activity in the kidney by 23% and GSH-Px activities in liver and kidney by 24% and 21%, respectively, compared to the Hg-treated group. These data indicate that the alleviation of Hg toxicity by Se treatment is well correlated with the protein sulfhydryl group content and GSH-Px activity.
Animal
;
Glutathione/metabolism*
;
Glutathione Peroxidase/analysis
;
Glutathione Reductase/analysis
;
Male
;
Mercury/toxicity*
;
Rats
;
Selenium/pharmacology*
;
Sulfhydryl Compounds/analysis*
2.Partial protection by lipoic acid against carboplantin-induced ototoxicity in rats.
Kazim HUSAIN ; Craig WHITWORTH ; Satu M SOMANI ; Leonard P RYBAK
Biomedical and Environmental Sciences 2005;18(3):198-206
OBJECTIVETo investigate the alterations in auditory brainstem evoked responses (ABRs) and the changes of carboplatin-induced ototoxicity in the cochlear oxidant/antioxidant systems and otoprotection by an antioxidant lipoate.
METHODSMale wistar rats were divided into four groups and treated as follows: 1) vehicle (saline) control, 2) carboplatin (256 mg/kg, i.p.), 3) lipoate (100 mg/kg, i.p.), 4) lipoate + carboplatin. Post-treatment ABRs were performed after four days and rats were sacrificed with their cochleae harvested and analyzed.
RESULTSCarboplatin significantly elevated ABR threshold above the pretreatment thresholds. Lipoate+carboplatin treated rats showed decreased elevation of hearing threshold. Carboplatin significantly depleted cochlear reduced to oxizized glutathione (GSH/GSSG) ratio, whereas lipoate+carboplatin treatment increased GSH/GSSG ratio. Carboplatin significantly decreased cochlear copper zinc-superoxide dismutase (CuZn-SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GR) and glutathione-S-transferase (GST) activities and enzyme protein expressions and a significant increase in Mn-SOD activity, protein expression and malondialdehyde (MDA) level. Cochlear antioxidant enzyme activities, enzyme protein expressions and MDA level were partially restored in lipoate+carboplatin treated rats, compared to carboplatin alone.
CONCLUSIONCarboplatin-induced ototoxicity is related to impairment of cochlear antioxidant system and otoprotection conferred by lipoate is associated with partial sparing of the cochlear antioxidant defense system.
Animals ; Antioxidants ; pharmacology ; Auditory Threshold ; drug effects ; Carboplatin ; Catalase ; metabolism ; Cochlea ; drug effects ; enzymology ; metabolism ; Evoked Potentials, Auditory, Brain Stem ; drug effects ; Glutathione ; metabolism ; Glutathione Disulfide ; metabolism ; Glutathione Peroxidase ; metabolism ; Glutathione Reductase ; metabolism ; Glutathione Transferase ; metabolism ; Hearing Loss, Sensorineural ; chemically induced ; Lipid Peroxidation ; Male ; Malondialdehyde ; metabolism ; Protective Agents ; pharmacology ; Rats ; Rats, Wistar ; Superoxide Dismutase ; metabolism ; Thioctic Acid ; pharmacology
3.Antioxidative effect of fullerenol on goat epididymal spermatozoa.
M Arul MURUGAN ; Bindu GANGADHARAN ; P P MATHUR
Asian Journal of Andrology 2002;4(2):149-152
AIMTo evaluate the effect of fullerenol on the antioxidant system of goat epididymal sperm.
METHODSFresh epididymides of adult goats were obtained from local slaughter houses and sperm were collected by chopping the epididymis in modified Ringer's phosphate solution (RPS medium). After several washings the sperm samples were equally dispersed in RPS medium and incubated with fullerenol (1, 10 and 100 micromol) and FeSO(4)/ascorbate (40/200 micromol) with or without fullerenol (1, 10 and 100 micromol) for 3 h at 32 degree C. After incubation, an aliquot of sperm samples were homogenized and centrifuged and the supernatant used for biochemical studies.
RESULTSIn FeSO(4)/ascorbate-incubated samples, the activities of antioxidant enzymes, superoxide dismutase, glutathione peroxidase and glutathione reductase, were decreased while lipid peroxidation increased as compared to the control sperm samples. In fullerenol-incubated sperm samples, the activities of superoxide dismutase, glutathione peroxidase and glutathione reductase were increased while lipid peroxidation was decreased in a dose-dependent manner. Co-incubation of sperm with fullerenol (1,10 and 100 micromol) and FeSO(4)/ascorbate (40/200 micromol) increased the activities of antioxidant enzymes and prevented the iron-induced elevation of lipid peroxidation in a dose-dependent manner.
CONCLUSIONFullerenol reduces iron-induced oxidative stress in epididymal sperm of goat by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation.
Animals ; Antioxidants ; pharmacology ; Epididymis ; Fullerenes ; pharmacology ; Glutathione Peroxidase ; metabolism ; Glutathione Reductase ; metabolism ; Goats ; In Vitro Techniques ; Lipid Peroxidation ; Male ; Spermatozoa ; drug effects ; physiology ; Superoxide Dismutase ; metabolism
4.A novel anticancer property of Lycium barbarum polysaccharide in triggering ferroptosis of breast cancer cells.
Xing DU ; Jingjing ZHANG ; Ling LIU ; Bo XU ; Hang HAN ; Wenjie DAI ; Xiuying PEI ; Xufeng FU ; Shaozhang HOU
Journal of Zhejiang University. Science. B 2022;23(4):286-299
Breast cancer is one of the most malignant tumors and is associated with high mortality rates among women. Lycium barbarum polysaccharide (LBP) is an extract from the fruits of the traditional Chinese herb, L. barbarum. LBP is a promising anticancer drug, due to its high activity and low toxicity. Although it has anticancer properties, its mechanisms of action have not been fully established. Ferroptosis, which is a novel anticancer strategy, is a cell death mechanism that relies on iron-dependent lipid reactive oxygen species (ROS) accumulation. In this study, human breast cancer cells (Michigan Cancer Foundation-7 (MCF-7) and MD Anderson-Metastatic Breast-231 (MDA-MB-231)) were treated with LBP. LBP inhibited their viability and proliferation in association with high levels of ferroptosis. Therefore, we aimed to ascertain whether LBP reduced cell viability through ferroptosis. We found that the structure and function of mitochondria, lipid peroxidation, and expression of solute carrier family 7 member 11 (SLC7A11, also known as xCT, the light-chain subunit of cystine/glutamate antiporter system Xc-) and glutathione peroxidase 4 (GPX4) were altered by LBP. Moreover, the ferroptosis inhibitor, Ferrostatin-1 (Fer-1), rescued LBP-induced ferroptosis-associated events including reduced cell viability and glutathione (GSH) production, accumulation of intracellular free divalent iron ions and malondialdehyde (MDA), and down-regulation of the expression of xCT and GPX4. Erastin (xCT inhibitor) and RSL3 (GPX4 inhibitor) inhibited the expression of xCT and GPX4, respectively, which was lower after the co-treatment of LBP with Erastin and RSL3. These results suggest that LBP effectively prevents breast cancer cell proliferation and promotes ferroptosis via the xCT/GPX4 pathway. Therefore, LBP exhibits novel anticancer properties by triggering ferroptosis, and may be a potential therapeutic option for breast cancer.
Breast Neoplasms/drug therapy*
;
Drugs, Chinese Herbal/pharmacology*
;
Female
;
Ferroptosis
;
Glutathione/metabolism*
;
Humans
;
Iron/metabolism*
5.Effect of p-Dimethylaminoazobenzene and 2(3)-tert-Butyl-4-hydroxyanisole on Lipid Pcroxidation, Glutathione-S-transferase, Peroxidase and Reductase in Rat Liver.
Yonsei Medical Journal 1981;22(2):95-100
An experiment was conducted in order to investigate the effect of p-dimethylaminoazobenzene (DAB) and 2(3)-tert-butyl-4-hydroxyanisole (BHA) on the lipid peroxidation and peroxide-destroying enzyme system in the rat liver. Dietary supplementation of DAB (0.06%) for three weeks caused the elevation of glutathione-S-transferase activity by 60% and glutathione reductase by 50%, but it decreased glutathione peroxidase and catalase activities significantly. Dietary supplementation of BHA (0.75%) also increased glutatione-S-transferase activity in the liver by 2 folds, and it counteracts DAB effect on the glutathione peroxidase and catalase activities. There was a marked increase in malon-dialdehyde content in the postnuclear fraction of liver by the treatment of DAB, but the addition of BHA lowered the malondialdehyde content to almost the control level. The protective effect of BHA on the lipid peroxidation induced by DAB administration at the enzyme level seems to be due to the induction of glutathione-S-transferase and the protection of glutathione peroxidase and catalase activities from being lowered by DAB administration.
Animal
;
Anisoles/pharmacology*
;
Butylated Hydroxyanisole/pharmacology*
;
Glutathione Peroxidase/analysis*
;
Glutathione Reductase/analysis*
;
Glutathione Transferase/analysis*
;
Lipid Peroxides/metabolism*
;
Liver/drug effects*
;
Liver/metabolism
;
Male
;
Peroxidases/analysis*
;
Rats
;
p-Dimethylaminoazobenzene/pharmacology*
6.Effect of Coriolus versicolor polysaccharide B on membrane glycosaminoglycans and cellular glutathione changes in RAW264.7 macrophages exposed to angiotensin II.
Ning LOU ; Gang MA ; Dao-feng WANG ; Zhi-wei ZHU ; Quan-guan SU ; Yi FANG
Journal of Southern Medical University 2007;27(12):1824-1826
OBJECTIVETo investigate the effect of Coriolus versicolor polysaccharide B (CVP-B) on increased membrane glycosaminoglycans (GAG) expression and intracellular glutathione (GSH) of RAW264.7 macrophages exposed to angiotensin II (Ang II).
METHODSThe plasma membrane of RAW264.7 macrophages exposed to Ang II treatment was isolated by ultracentrifugation, and the membrane GAG expression was analyzed using 1, 9-dimethylmethylene blue (DMMB) spectrophotometric assay for sulfated GAG. The intracellular reduced GSH was determined using fluorophotometry.
RESULTSThe GAG content in the macrophage membranes increased by up to 54% following cell exposure to 1.0 micromol/L Ang II, whereas in presence of 1.0 micromol;/L Ang II, CVP-B at 1, 10, and 50 microg/ml decreased the GAG content by 13%, 43% (P<0.01), and 52% (P<0.01), respectively. The macrophage GSH activity decreased by 69% following incubation with 1.0 micromol;/L Ang II for 24 h, and CVP-B treatment at 1, 10, and 50 microg/ml in presence of 1.0 micromol;/L Ang II resulted in significant increment of GSH activity by 31%(P<0.05), 104% (P<0.01), and 168% (P<0.01), respectively.
CONCLUSIONThese data provide the first evidence that CVP-B inhibits elevated GAG expression in RAW264.7 macrophage membrane induced by Ang II.
Agaricales ; chemistry ; Angiotensin II ; pharmacology ; Animals ; Cell Line ; Cell Membrane ; metabolism ; Glutathione ; analysis ; Glycosaminoglycans ; analysis ; Macrophages ; metabolism ; Mice ; Polysaccharides ; pharmacology
7.Effect of H2O2 stress on glutathione production by Candida utilis.
Liao XIANYAN ; Zhang WENYAN ; Zhu ZHI ; Chen JIAN ; Guocheng DU
Chinese Journal of Biotechnology 2008;24(6):1046-1050
Glutathione (GSH) plays an important role in the responses of microorganisms to the environmental stimulation and stress. The effect of H2O2 stress under different fermentation time and H2O2 concentration as well as continuous stress on GSH fermentation of Candida utilis were investigated in this paper. It was found that low concentration of H202 accelerated GSH production. When treated by low concentration of H2O2 (36 mmol/L), the final concentration of GSH reached 922 mg/L and the intracellular GSH content reached 1.64%, which increased by 7% and 35% than the controls, respectively.
Candida
;
metabolism
;
physiology
;
Glutathione
;
biosynthesis
;
Hydrogen Peroxide
;
pharmacology
;
Stress, Physiological
;
physiology
8.Effect of curcumin on the induction of glutathione S-transferases and NADP(H):quinone oxidoreductase and its possible mechanism of action.
She-fang YE ; Zhen-qing HOU ; Li-ming ZHONG ; Qi-qing ZHANG
Acta Pharmaceutica Sinica 2007;42(4):376-380
This study is to investigate the effect of curcumin on the induction of glutathione S-transferases (GST) and NADP(H):quinone oxidoreductase (NQO) and explore their possible molecular mechanism. The activity of GST, NQO and cellular reduced glutathione (GSH) content were measured by spectrophotometrical methods. Cellular changes in the distribution of NF-E2 related factor 2 (Nrf2) were detected by Western blotting analysis. Nrf2-AREs (antioxidant-responsive elements) binding activity was examined by electrophoretic mobility shift assay (EMSA). Treatment of HT-29 human colon adenocarcinoma cells with curcumin dramatically induced the activity of GST and NQO at the range of 10-30 micromol x L(-1). Curcumin exposure caused a significant increase in cellular GSH content rapidly as early as 3 h. Moreover, curcumin triggered the accumulation of Nrf2 in nucleus, and increased Nrf2 content in ARE complexes. These results demonstrated that induction of GST and NQO activity by curcumin may be mediated by translocation of transcription factor Nrf2 from cytoplasm to nuclear and increased binding activity of Nrf2-ARE complexes.
Antineoplastic Agents
;
pharmacology
;
Antioxidants
;
metabolism
;
Cell Nucleus
;
metabolism
;
Curcumin
;
pharmacology
;
Enzyme Induction
;
drug effects
;
Glutathione
;
metabolism
;
Glutathione Transferase
;
metabolism
;
HT29 Cells
;
Humans
;
NAD(P)H Dehydrogenase (Quinone)
;
metabolism
;
NF-E2-Related Factor 2
;
metabolism
;
Response Elements
;
drug effects
;
Signal Transduction
9.Protective effects of glycyl-glutamine dipeptide supplement on the heart function in burn rats.
Shang-jun LV ; Yong ZHANG ; Yong SUN ; Wei WU ; Zhong-yi YOU ; Shi-liang WANG ; Xi PENG
Chinese Journal of Burns 2007;23(4):244-248
OBJECTIVETo investigate the protective effects of glycyl-glutamine dipeptide supplement on the function of myocardial dynamics in severely burned rats, and to explore its mechanism.
METHODSOne hundred and thirty-six Wistar rats were randomly divided into five groups: i. e, control group (C, n = 8, without burns), burn group (B, n = 32), Gln group (Gln, n = 32), Gly group (Gly, n = 32) and Gly-Gln group (Gly-Gln, n = 32). The rats in the latter four groups were respectively treated with tyrosine (1.5 g x kg(-1) x d(-1)), glutamine (1.0 g x kg(-1) x d(-1)) and tyrosine (0.5 g x kg(-1) x d(-1)), glycine (0.5 g x kg(-1) x d(-1)) and tyrosine (1.0 g x kg(-1) x d(-1)), and Glycyl-glutamine dipeptide (1.5 g x kg(-1) x d(-1)) after receiving a 30% TBSA full-thickness burn on the back. Glutathione (GSH), adenosine monophosphate (AMP), adenosine diphosphate (ADP), adenosine triphosphate (ATP), cell energy charge (EC) and the index of myocardial dynamics (ASOP, AODP, LVSP, + dp/dtmax) were measured at 12, 24, 48, 72 post-burn hours (PBH).
RESULTSThe content of GSH, ATP, EC and the level of aortic systolic pressure (ASOP), aortic diastolic blood pressure (AODP), left ventricular end diastolic pressure (LVEDP) and maximum rate of intraventricular pressure rise/down (+ dp/dtmax) in B, Gln, Gly, Gly-Gln groups were obviously lower than those in C group (P < 0.01), while the levels of AMP and ADP showed an opposite tendency. Compared with B group, the above indices were ameliorated. The content of GSH (72.7 +/- 1.7) micromol/g in Gly-Gln group at 12 PBH was obviously higher than that in Gln group (67.8 +/- 3.8) micromol/g (P < 0.01). The levels of EC and AOSP were obviously higher in Gly-Gln group than that in Gln group (P < 0.01). The level of GSH, EC, AOSP in Gly-Gln groups were obviously higher than those in Gly group at 48 PBH.
CONCLUSIONGlycyl-glutamine dipeptide, Gly and Gln supplementation after burns can improve the content of GSH and high energy phosphate compound, and suppress the decline of myocardial dynamics function. The effects of Glycyl-glutamine dipeptide is better than single Gly or Gln, indicating that the protective effect on myocardial function after severe burns by Gln and Gly is synergistic.
Animals ; Burns ; drug therapy ; metabolism ; Dipeptides ; pharmacology ; Glutathione ; metabolism ; Glycine ; Myocytes, Cardiac ; drug effects ; metabolism ; Random Allocation ; Rats ; Rats, Wistar
10.Leonurine inhibits ferroptosis in renal tubular epithelial cells by activating p62/Nrf2/HO-1 signaling pathway.
Ai-Jun WU ; Nai-Qing CHEN ; Li-Hua HUANG ; Ran CHENG ; Xiao-Wan WANG ; Chuang LI ; Wei MAO ; Qing-Ming HUANG ; Peng XU ; Rui-Min TIAN
China Journal of Chinese Materia Medica 2023;48(8):2176-2183
To investigate the protective effect and the potential mechanism of leonurine(Leo) against erastin-induced ferroptosis in human renal tubular epithelial cells(HK-2 cells), an in vitro erastin-induced ferroptosis model was constructed to detect the cell viability as well as the expressions of ferroptosis-related indexes and signaling pathway-related proteins. HK-2 cells were cultured in vitro, and the effects of Leo on the viability of HK-2 cells at 10, 20, 40, 60, 80 and 100 μmol·L~(-1) were examined by CCK-8 assay to determine the safe dose range of Leo administration. A ferroptosis cell model was induced by erastin, a common ferroptosis inducer, and the appropriate concentrations were screened. CCK-8 assay was used to detect the effects of Leo(20, 40, 80 μmol·L~(-1)) and positive drug ferrostatin-1(Fer-1, 1, 2 μmol·L~(-1)) on the viability of ferroptosis model cells, and the changes of cell morphology were observed by phase contrast microscopy. Then, the optimal concentration of Leo was obtained by Western blot for nuclear factor erythroid 2-related factor 2(Nrf2) activation, and transmission electron microscope was further used to detect the characteristic microscopic morphological changes during ferroptosis. Flow cytometry was performed to detect reactive oxygen species(ROS), and the level of glutathione(GSH) was measured using a GSH assay kit. The expressions of glutathione peroxidase 4(GPX4), p62, and heme oxygenase 1(HO-1) in each group were quantified by Western blot. RESULTS:: showed that Leo had no side effects on the viability of normal HK-2 cells in the concentration range of 10-100 μmol·L~(-1). The viability of HK-2 cells decreased as the concentration of erastin increased, and 5 μmol·L~(-1) erastin significantly induced ferroptosis in the cells. Compared with the model group, Leo dose-dependently increased cell via-bility and improved cell morphology, and 80 μmol·L~(-1) Leo promoted the translocation of Nrf2 from the cytoplasm to the nucleus. Further studies revealed that Leo remarkably alleviated the characteristic microstructural damage of ferroptosis cells caused by erastin, inhibited the release of intracellular ROS, elevated GSH and GPX4, promoted the nuclear translocation of Nrf2, and significantly upregulated the expression of p62 and HO-1 proteins. In conclusion, Leo exerted a protective effect on erastin-induced ferroptosis in HK-2 cells, which might be associated with its anti-oxidative stress by activating p62/Nrf2/HO-1 signaling pathway.
Humans
;
Ferroptosis
;
Reactive Oxygen Species/metabolism*
;
NF-E2-Related Factor 2/metabolism*
;
Sincalide/pharmacology*
;
Signal Transduction
;
Epithelial Cells/metabolism*
;
Glutathione