1.Exploration of cross-cultivar group characteristics of a new cultivar of Prunus mume 'Zhizhang Guhong Chongcui'.
Xiaotian QIN ; Mengge GUO ; Shaohua QIN ; Ruidan CHEN
Chinese Journal of Biotechnology 2024;40(1):239-251
'Zhizhang Guhong Chongcui' is a new cultivar of Prunus mume with cross-cultivar group characteristics. It has typical characteristics of cinnabar purple cultivar group and green calyx cultivar group. It has green calyx, white flower, and light purple xylem, but the mechanism remains unclear. In order to clarify the causes of its cross-cultivar group traits, the color phenotype, anthocyanin content and the expression levels of genes related to anthocyanin synthesis pathway of 'Zhizhang Guhong Chongcui', 'Yuxi Zhusha' and 'Yuxi Bian Lü'e' were determined. It was found that the red degree of petals, sepals and fresh xylem in branches was positively correlated with the total anthocyanin content. MYBɑ1, MYB1, and bHLH3 were the key transcription factor genes that affected the redness of the three cultivars of flowers and xylem. The transcription factors further promoted the high expression of structural genes F3'H, DFR, ANS and UFGT, thereby promoting the production of red traits. Combined with phenotype, anthocyanin content and qRT-PCR results, it was speculated that the white color of petals of 'Zhizhang Guhong Chongcui' were derived from the high expression of FLS, F3'5'H, LAR and ANR genes in other branches of cyanidin synthesis pathway, and the low expression of GST gene. The green color of sepals might be originated from the relatively low expression of F3'H, DFR and ANS genes. The red color of xylem might be derived from the high expression of ANS and UFGT genes. This study made a preliminary explanation for the characteristics of the cross-cultivar group of 'Zhizhang Guhong Chongcui', and provided a reference for molecular breeding of flower color and xylem color of Prunus mume.
Animals
;
Anthocyanins
;
DNA Shuffling
;
Flowers/genetics*
;
Porifera
;
Prunus/genetics*
;
Glutamine/analogs & derivatives*
;
Plant Extracts
2.Protective Effect of Naoxintong Capsule () Combined with Guhong Injection () on Rat Brain Microvascular Endothelial Cells during Cerebral Ischemia-Reperfusion Injury.
Hai-Yan WANG ; Hui-Fen ZHOU ; Yu HE ; Li YU ; Chang LI ; Jie-Hong YANG ; Hai-Tong WAN
Chinese journal of integrative medicine 2021;27(10):744-751
OBJECTIVE:
To investigate the synergistic effect of Naoxintong Capsule (NXTC, ) and Guhong Injection (GHI, ) on cerebral ischemia-reperfusion (I/R) injury.
METHODS:
Forty-eight Sprague-Dawley rats were divided into 6 groups: control group, oxygen and glucose deprivation (OGD) group, nimodipine group (9.375 mg/kg), NXTC group (0.5 g/kg), GHI group (5 mL/kg) and NXTC+GHI group (0.5 g/kg NXTC+5 mL/kg GHI), after the onset of reperfusion and once per day for the following 7 days. Blood was collected 1 h after final administration, and the sera were collected. Cultured primary rat brain microvascular endothelial cells (rBMECs) were subjected to OGD to establish a cell injury model. Untreated rBMECs were used as blank control. The cell counting kit-8 assay was used to assess cell viability using the sera. Malondialdehyde (MDA) and superoxide dismutase (SOD) levels were assessed using an enzyme-linked immunosorbent assay. Apoptosis was evaluated after Hoechst33342 staining using fluorescence microscopy and flow cytometry. JC-1 staining was performed to assess changes in mitochondrial membrane potential.
RESULTS:
Statistical analysis indicated that more than 95% of the cells were rBMECs. Compared with the OGD group, the cellular morphology of the all drug delivery groups improved. In particular, the combined drug group had the most significant effect. Compared with the OGD group, all drug intervention groups induced a decrease in the apoptotic rate of rBMECs, increased the SOD levels, and decreased the MDA levels (all P<0.01). Compared with the mono-therapy groups, the NXTC+GHI group exhibited a significant improvement in the number of apoptotic rBMECs (P<0.01). All drug intervention groups showed different degrees of increase in membrane potential, and the NXTC+GHI group was higher than the NXTC or GHI group (P<0.01).
CONCLUSION
The combinationa application of NXTC and GHI on cerebral I/R injury clearly resulted in protective benefits.
Animals
;
Apoptosis
;
Brain
;
Brain Ischemia/drug therapy*
;
Drugs, Chinese Herbal
;
Endothelial Cells
;
Glutamine/analogs & derivatives*
;
Plant Extracts
;
Rats
;
Rats, Sprague-Dawley
;
Reperfusion Injury/drug therapy*
3.Effects of panthenol-glutamine on intestine of rats with burn injury and its dose-effect relationship.
Pei WANG ; Yun ZHAO ; Hua-bing QI ; Dong YI ; Feng-jun WANG ; Shi-liang WANG ; Xi PENG
Chinese Journal of Burns 2013;29(4):338-343
OBJECTIVETo study the effects of the panthenol-glutamine on intestinal damage and motor function of intestine in rats with burn injury as well as its dose-effect relationship.
METHODS(1) Experiment 1. Ninety SD rats were divided into groups A-I according to the random number table, with 10 rats in each group. Rats in groups A-I were inflicted with 30% TBSA full-thickness burn and fed by gavage with panthenol and glutamine at post injury hour (PIH) 4, in the whole dosage of 1.00 and 4, 0.50 and 4, 0.25 and 4, 1.00 and 2, 0.50 and 2, 0.25 and 2, 1.00 and 1, 0.50 and 1, 0.25 and 1 g·kg(-1)·d(-1). The feeding was carried out twice a day to achieve the total dosage in 7 days. On drug withdrawal day, blood and intestinal tissue were harvested to detect the intestinal propulsion index, diamine oxidase (DAO) activity in serum, and the content of acetylcholine and intestinal mucosa protein. The best proportion of panthenol and glutamine was screened. (2) Experiment 2. Seventy SD rats were divided into normal control (NC), burn (B), burn+panthenol (B+P), burn+glutamine (B+G), and burn+low, moderate, or high dose of panthenol-glutamine (B+LPG, B+MPG, B+HPG) groups according to the random number table, with 10 rats in each group. Rats in the latter 6 groups were inflicted with 30% TBSA full-thickness burn. Rats in the latter 5 groups were fed by gavage with panthenol and (or) glutamine at PIH 4. Rats in group B+P were fed with panthenol for 1 g·kg(-1)·d(-1), rats in group B+G with glutamine for 4 g·kg(-1)·d(-1), rats in groups B+LPG, B+MPG, and B+HPG with panthenol and glutamine in the dosage of 0.50 and 2, 1.00 and 4, 2.00 and 8 g·kg(-1)·d(-1). The feeding was carried out twice a day to achieve the total dosage for 7 days. The indexes and time point for observation were the same as those of experiment 1. Meanwhile, the pathological change in intestine was observed. The same process was carried out in the rats of group NC. Data were processed with factorial designed analysis of variance (ANOVA), one-way ANOVA and Fisher's exact probability test. LSD was applied for paired comparison.
RESULTS(1) The values of intestinal propulsion index and intestinal mucosa protein content in groups A and B were close (with P values all above 0.05), and were significantly higher than those of the other 7 groups (with P values all below 0.01). Content of acetylcholine in group A was significantly higher than that of the other 8 groups (with P values all below 0.01). DAO activity in groups A, D, and E was close in value (with P values all above 0.05), and all of the values were significantly lower than those of the other 6 groups (with P values all below 0.01). The best proportion of panthenol and glutamine was 1.00 and 4 g·kg(-1)·d(-1). (2) Compared with those of group NC, the intestinal propulsion index, the contents of acetylcholine and intestinal mucosa protein were decreased significantly, while the DAO activity obviously increased in group B (with P values all below 0.01); the intestinal propulsion index was decreased significantly in group B+P (P < 0.01); the intestinal propulsion index and content of acetylcholine were decreased significantly in group B+G (with P values all below 0.01); the intestinal propulsion index was decreased significantly in group B+LPG (P < 0.01); no obvious change was observed in groups B+MPG and B+HPG (with P values all above 0.05). Compared with those of group B [0.50 ± 0.07, (69 ± 10) µg/mL, (26 ± 11) µg/g, (0.672 ± 0.145) U/mL], the contents of acetylcholine and intestinal mucosa protein were increased significantly, DAO activity decreased significantly in group B+P (with P values all below 0.01); the contents of intestinal mucosa protein was increased significantly, DAO activity decreased significantly in group B+G (with P values all below 0.01); the contents of acetylcholine and intestinal mucosa protein were increased significantly in group B+LPG (with P values all below 0.01); the intestinal propulsion index, the contents of acetylcholine and intestinal mucosa protein were increased significantly, while the DAO activity obviously decreased in groups B+MPG and B+HPG [0.66 ± 0.07, 0.68 ± 0.05; (163 ± 24), (168 ± 15) µg/mL; (57 ± 7), (57 ± 7) µg/g; (0.203 ± 0.070), (0.193 ± 0.068) U/mL, with P values all below 0.01]. The levels of the four indexes in groups B+MPG and B+HPG were close or the same in values (with P values all above 0.05). Compared with those of group B, the numbers of rats with irregularly arranged villi in group B+P were decreased significantly (P < 0.05); the numbers of rats with villi decreased in height, irregularly arranged villi, and neutrophil infiltration in group B+G were decreased significantly (with P values all below 0.05); the numbers of rats with villi decreased in height, irregularly arranged villi, degeneration and necrosis of cells, and neutrophil infiltration in group B+LPG were decreased significantly (with P values all below 0.05); the numbers of rats with villi decreased in height and number, irregularly arranged villi, degeneration and necrosis of cells, and neutrophil infiltration in groups B+MPG and B+HPG were decreased significantly (with P values all below 0.05). There was no statistically significant difference between group B+HPG and group B+MPG for the former mentioned five indexes (with P values all above 0.05).
CONCLUSIONSCombined application of panthenol and glutamine can obviously reduce intestinal mucosa damage and promote gastrointestinal motility of rats with burn injury, and they show curative effect superior to exclusive use of either of the two drugs. The best proportion of panthenol and glutamine is 1.00 and 4 g·kg(-1)·d(-1).
Animals ; Burns ; physiopathology ; Dose-Response Relationship, Drug ; Female ; Gastrointestinal Motility ; drug effects ; Glutamine ; pharmacology ; Intestinal Mucosa ; drug effects ; Intestine, Small ; Intestines ; drug effects ; Male ; Pantothenic Acid ; analogs & derivatives ; pharmacology ; Rats ; Rats, Sprague-Dawley
4.Pharmacotherapy for Alcohol Dependence: Anticraving Medications for Relapse Prevention.
Young Chul JUNG ; Kee NAMKOONG
Yonsei Medical Journal 2006;47(2):167-178
Alcohol dependence is a chronic disorder that results from a variety of genetic, psychosocial, and environmental factors. Relapse prevention for alcohol dependence has traditionally involved psychosocial and psychotherapeutic interventions. Pharmacotherapy, however, in conjunction with behavioral therapy, is generating interest as another modality to prevent relapse and enhance abstinence. Naltrexone and acamprosate are at the forefront of the currently available pharmacological options. Naltrexone is an opioid receptor antagonist and is thought to reduce the rewarding effect of alcohol. Acamprosate normalizes the dysregulation of N-methyl-D-aspartate (NMDA)-mediated glutamatergic excitation that occurs in alcohol withdrawal and early abstinence.These different mechanisms of action and different target neurotransmitter systems may endow the two drugs with efficacy for different aspects of alcohol use behavior. Since not all patients seem to benefit from naltrexone and acamprosate, there are ongoing efforts to improve the treatment outcomes by examining the advantages of combined pharmacotherapy and exploring the variables that might predict the response of the medications. In addition, novel medications are being investigated to assess their efficacy in preventing relapse and increasing abstinence.
gamma-Aminobutyric Acid/metabolism
;
Taurine/analogs & derivatives/therapeutic use
;
Recurrence
;
Receptors, Opioid, mu/genetics/metabolism
;
Receptors, Opioid/antagonists & inhibitors
;
Polymorphism, Genetic
;
Neurons/metabolism
;
Naltrexone/therapeutic use
;
N-Methylaspartate/metabolism
;
Models, Neurological
;
Models, Biological
;
Humans
;
Glutamine/metabolism
;
Disulfiram/therapeutic use
;
Alcoholism/*drug therapy
;
Alcohol Deterrents/*therapeutic use