1.Induction of UGT1A1 expression by praeruptorin A and praeruptorin C through hCAR pathway.
Xu-Nian ZHOU ; Hui-Chang BI ; Jing JIN ; Rong-Rong DENG ; Meng-Jia YING ; Yong-Tao WANG ; Min HUANG
Acta Pharmaceutica Sinica 2013;48(5):794-798
This study is purposed to investigate the effects of praeruptorin A (PA) and praeruptorin C (PC) on UGT1A1 in HepG2 cells through hCAR pathway. PA and PC were incubated with HepG2 cells for 24 h and 48 h, mRNA and protein expressions of UGT1A1 were determined by real-time PCR and Western blotting assays. Additionally, effects of PA and PC on UGT1A1 mRNA and protein expressions were also measured after transient transfection of a specific CAR siRNA for 72 h in HepG2 cells. UGT1A1 mRNA and protein expression levels were significantly increased by PA and PC after incubation for 48 h. Moreover, the mRNA and protein up-regulations of UGT1A1 were attenuated by transient transfection of a specific CAR siRNA, suggesting the induction was mediated by CAR. The results suggest that PA and PC can significantly up-regulate UGT1A1 expression partially via the CAR-mediated pathway.
Apiaceae
;
chemistry
;
Coumarins
;
isolation & purification
;
pharmacology
;
Drugs, Chinese Herbal
;
pharmacology
;
Glucuronosyltransferase
;
genetics
;
metabolism
;
Hep G2 Cells
;
Humans
;
Plant Roots
;
chemistry
;
Plants, Medicinal
;
chemistry
;
RNA, Messenger
;
metabolism
;
RNA, Small Interfering
;
genetics
;
metabolism
;
Receptors, Cytoplasmic and Nuclear
;
genetics
;
metabolism
;
Signal Transduction
;
Transfection
2.A case of concomitant Gilbert's syndrome and hereditary spherocytosis.
Hee Jung LEE ; Hee Seok MOON ; Eaum Seok LEE ; Seok Hyun KIM ; Jae Kyu SUNG ; Byung Seok LEE ; Hyun Yong JEONG ; Heon Young LEE ; Young Jae EU
The Korean Journal of Hepatology 2010;16(3):321-324
We describe moderate hyperbilirubinemia in a 28-year-old man who suffered from gallstones and splenomegaly, with combined disorders of hereditary spherocytosis (HS) and Gilbert's syndrome (GS). Since it is difficult to diagnose HS in the absence of signs of anemia, we evaluated both the genetic mutation in the UGT1A1 gene and abnormalities in the erythrocyte membrane protein; the former was heterozygous for a UGT1A1 allele with three mutations and the latter was partially deficient in ankyrin expression. This is the first report of the concomitance of HS and GS with three heterozygous mutations [T-3279G, A (TA)7TAA, and G211A] in the UGT1A1 gene.
Adult
;
Alleles
;
Ankyrins/metabolism
;
Electrophoresis, Polyacrylamide Gel
;
Gallstones/surgery
;
Gilbert Disease/complications/*diagnosis/genetics
;
Glucuronosyltransferase/chemistry/genetics/metabolism
;
Heterozygote
;
Humans
;
Male
;
Mutation
;
Protein Structure, Tertiary
;
Sequence Analysis, DNA
;
Spherocytosis, Hereditary/complications/*diagnosis/genetics
;
Splenomegaly/diagnosis
3.Transcriptional Regulation of Proteoglycans and Glycosaminoglycan Chain-synthesizing Glycosyltransferases by UV Irradiation in Cultured Human Dermal Fibroblasts.
Jeong Eun SHIN ; Jang Hee OH ; Yeon Kyung KIM ; Ji Yong JUNG ; Jin Ho CHUNG
Journal of Korean Medical Science 2011;26(3):417-424
Various kinds of glycosaminoglycans (GAGs) and proteoglycans (PGs) have been known to be involved in structural and space-filling functions, as well as many physiological regulations in skin. To investigate ultraviolet (UV) radiation-mediated regulation of GAGs and PGs in cultured human dermal fibroblasts, transcriptional changes of many types of PGs and GAG chain-synthesizing enzymes at 18 hr after 75 mJ/cm2 of UV irradiation were examined using quantitative real-time polymerase chain reaction methods. Hyaluronic acid synthase (HAS)-1, -2, and -3 and hyaluronidase-2 mRNA expressions were significantly increased by UV irradiation. Expressions of lumican, fibromodulin, osteoglycin, syndecan-2, perlecan, agrin, versican, decorin, and biglycan were significantly decreased by UV irradiation, while syndecan-1 was increased. Expressions of GAG chain-synthesizing glycosyltransferases, xylosyltransferase-1, beta1,3-glucuronyltransferase-1, beta1,4-galactosyltransferase-2, -4, exostosin-1, chondroitin polymerizing factor, and chondroitin sulfate synthase-3 were significantly reduced, whereas those of beta1,3-galactosyltransferase-6, beta1,4-galactosyltransferase-3, -7, beta-1,3-N-acetylglucosaminyltran sferase-2, and -7 were increased by UV irradiation. Heparanase-1 mRNA expression was increased, but that of heparanase-2 was reduced by UV irradiation. Time-course investigation of representative genes showed consistent results. In conclusion, UV irradiation may increase hyaluronic acid production through HAS induction, and decrease other GAG productions through downregulation of PG core proteins and GAG chain-synthesizing glycosyltransferases in cultured human dermal fibroblasts.
Cell Line
;
Fibroblasts/metabolism/radiation effects
;
Gene Expression Regulation/radiation effects
;
Glucuronosyltransferase/genetics/radiation effects
;
Glycosaminoglycans/*biosynthesis/chemistry
;
Glycosyltransferases/genetics/*metabolism
;
Humans
;
Hyaluronic Acid/biosynthesis
;
Hyaluronoglucosaminidase/genetics/radiation effects
;
Polymerase Chain Reaction
;
Proteoglycans/*biosynthesis/genetics/radiation effects
;
RNA, Messenger/analysis/genetics
;
Skin/*metabolism/radiation effects
;
Transcription, Genetic/radiation effects
;
*Ultraviolet Rays