1.Application of sucrose phosphorylase in glycosylation.
Ruini JIANG ; Kang YE ; Tian FAN ; Yuele LU ; Linjiang ZHU ; Xiaolong CHEN ; Hanchi CHEN
Chinese Journal of Biotechnology 2021;37(1):112-129
Water solubility, stability, and bioavailability, can be substantially improved after glycosylation. Glycosylation of bioactive compounds catalyzed by glycoside hydrolases (GHs) and glycosyltransferases (GTs) has become a research hotspot. Thanks to their rich sources and use of cheap glycosyl donors, GHs are advantageous in terms of scaled catalysis compared to GTs. Among GHs, sucrose phosphorylase has attracted extensive attentions in chemical engineering due to its prominent glycosylation activity as well as its acceptor promiscuity. This paper reviews the structure, catalytic characteristics, and directional redesign of sucrose phosphorylase. Meanwhile, glycosylation of diverse chemicals with sucrose phosphorylase and its coupling applications with other biocatalysts are summarized. Future research directions were also discussed based on the current research progress combined with our working experience.
Glucosyltransferases/metabolism*
;
Glycoside Hydrolases/metabolism*
;
Glycosylation
;
Glycosyltransferases/genetics*
2.Enzymatic characterization of lignan glucosyltransferase of Isatis indigotica.
Yin-Yin JIANG ; Yu-Ping TAN ; Shu-Fu SUN ; Jian YANG ; Juan GUO ; Jin-Fu TANG
China Journal of Chinese Materia Medica 2022;47(15):4074-4083
The lignan glycosyltransferase UGT236(belonging to the UGT71 B family) from Isatis indigotica can catalyze the production of phloridzin from phloretin in vitro. UGT236 shares high identity with P2'GT from apple. In this study, the recombinant plasmid pET28 a-MBP-UGT236 was transferred into Escherichia coli Rosetta(DE3) cells and induced by isopropyl-β-D-thiogalactoside(IPTG). The purified UGT236 protein was used for enzymatic characterization with phloretin as substrate. The results showed that UGT236 had the optimal reaction temperature of 40 ℃ and the optimal pH 8(Na_2HPO_4-NaH_2PO_4 system). The UGT236 activity was inhibited by Ni~(2+) and Al~(3+), enhanced by Fe~(2+), Co~(2+), and Mn~(2+), and did not affected by Mg~(2+), Ca~(2+), Li~+, Na~+, or K~+. The K_m, K_(cat), and K_(cat)/K_m of phloretin were 61.03 μmol·L~(-1), 0.01 s~(-1), and 157.11 mol~(-1)·s~(-1)·L, and those of UDPG were 183.6 μmol·L~(-1), 0.01 s~(-1), and 51.91 mol~(-1)·s~(-1)·L, respectively. The possible active sites were predicted by homologous modeling and molecular docking. By mutagenisis and catalytic activity detection, three key active sites, Glu391, His15, and Thr141, were identified, while Phe146 was related to product diversity. In summary, we found that the lignan glycosyltransferase UGT236 from I.indigotica could catalyze the reaction of phloretin into phloridzin. Several key amino acid residues were identified by structure prediction, molecular docking, and site-mutagenesis, which provided a basis for studying the specificity and diversity of phloretin glycoside products. This study can provide a reference for artificially producing glycosyltransferase elements with high efficiency and specific catalysis.
Glucosyltransferases/genetics*
;
Glycosyltransferases/metabolism*
;
Isatis
;
Lignans/metabolism*
;
Molecular Docking Simulation
;
Phloretin/metabolism*
;
Phlorhizin/metabolism*
3.Increasing of product specificity of gamma-cyclodextrin by mutating the active domain of alpha-cyclodextrin glucanotransferase from Paenibacillus macerans sp. 602-1.
Ting XIE ; Yang YUE ; Binghong SONG ; Yapeng CHAO ; Shijun QIAN
Chinese Journal of Biotechnology 2013;29(9):1234-1244
We studied the mutation effect of subsites -3(Lys47), -7(146-152), and cyclization center (Tyr195) in active domain on product specificity of alpha-cyclodextrin glucanotransferase (alpha-CGTase) from Paenibacillus macerans sp. 602-1. The Lys47 was replaced by Thr47 and Tyr195 by Ile195, and the amino acids from 146 to 152 were replaced by Ile (named as delta6). All these mutant alpha-CGTases were actively expressed in E. coli BL21. Compared with the wild-type alpha-CGTase, the starch-degrading activities of all the mutant enzymes were declined. For mutant Y195I, the percentage of alpha-CD was decreased from 68% to 30%, and beta-CD was raised from 22.2% to 33.3%. Interestingly, gamma-CD was increased from 8.9% to 36.7% and became the main product, while the actual yield was increased from 0.4 g/L to 1.1 g/L. Mutant K47T and delta6 still produced alpha-CD as main product though the percentage of beta- and gamma-CD increased. Purified Y195I CGTase showed similar optimum temperature with the wild-type alpha-CGTase, but its optimum pH shifted from 5.0 to 6.0 with better pH stability. In summary, mutant Y195I CGTase has the potential to produce gamma-CD as the main product.
Escherichia coli
;
genetics
;
metabolism
;
Glucosyltransferases
;
genetics
;
metabolism
;
Mutant Proteins
;
genetics
;
metabolism
;
Mutation
;
Paenibacillus
;
enzymology
;
Recombinant Proteins
;
genetics
;
gamma-Cyclodextrins
;
metabolism
4.Effect of mutating subsite -7 on product specificity of cyclodextrin glucanotransferase from alkalophilic Bacillus clarkii.
Dong YANG ; Jingfei TIAN ; Sheng CHEN ; Jing WU
Chinese Journal of Biotechnology 2012;28(2):191-202
To investigate the mechanism of high product specificity of gamma-clodextrin glucanotransferase (CGTase) from alkalophilic Bacillus clarkii 7364, we aligned protein sequence and structure model, found out that loss of 6 amino acids at subsite -7 probably affected its product specificity. Using overlapping PCR method, we inserted 6 amino acids into subsite -7 of CGTase. The mutant CGTase gene was ligated with pET-20b (+) and expressed in Escherichia coli BL21 (DE3). The extracellular recombinant enzyme was used to transform soluble starch into cyclodextrins (CDs). HPLC analysis results show that, compared to wild CGTase, the gamma-CDs produced by mutant enzyme decreased from 76.0% to 12.5%, whereas the ratio of alpha- and beta-CDs increased from 8.7% and 15.2% to 37.5% and 50%. The possible mechanism was that, compared to alpha-, beta-CGTase, wild gamma-CGTase lacks 6 amino acids in its subsite -7. This conformation provided more space for glucose combination and was thus advantageous for forming gamma-CD. When the 6 amino acids were inserted into the subsite -7 of wild gamma-CGTase, the space to bind with glucose reduced and consequently resulted in less gamma-CD production.
Bacillus
;
enzymology
;
genetics
;
Escherichia coli
;
genetics
;
metabolism
;
Glucosyltransferases
;
biosynthesis
;
genetics
;
Mutant Proteins
;
biosynthesis
;
genetics
;
Recombinant Proteins
;
biosynthesis
;
genetics
5.The product specificity evolution of cyclodextrin glucanotransferase: problems and challenges.
Xin-Shuai ZHAO ; Zhan-Kun WANG ; Qing-Sheng QI
Chinese Journal of Biotechnology 2007;23(2):181-188
Cyclodextrin glucanotransferase, the essential enzyme for the production of cyclodextrins, has become the focus of scientific research nowadays. Although many related enzyme properties are well known, the crucial factors in product specificity determination remain to be answered. Here, the recent research progresses of cyclodextrin glucanotransferase, especially those about the evolution of product specificity, were reviewed, and the scientific problems were discussed.
Archaeal Proteins
;
genetics
;
metabolism
;
Bacillus
;
enzymology
;
genetics
;
Bacterial Proteins
;
genetics
;
metabolism
;
Biocatalysis
;
Cyclodextrins
;
metabolism
;
Evolution, Molecular
;
Glucosyltransferases
;
classification
;
genetics
;
metabolism
;
Mutation
;
Thermoanaerobacterium
;
enzymology
;
genetics
;
Thermococcus
6.Change of hydrolase activity in germinating seeds of trxS transgenic barley.
Li WEI ; Weiwei KONG ; Jun YIN
Chinese Journal of Biotechnology 2008;24(9):1526-1530
Genetic modification of barley variety can be an efficient way to improve beer quality. The objective of this study was to understand the effect of trxS gene on hydrolases activities in transgenic and non-transgenic barley seeds. The results showed that alpha-amylase, free beta-amylase and limit dextrinase activity were increased in transgenic seeds in comparison with non-transgenic seeds. Sulfhydryl content of protein in transgenic seeds was also higher than that in non-transgenic seeds, suggesting that trxS gene could express in barley seeds, which opens a new way for breeding new barley varieties to improve beer quality.
Germination
;
genetics
;
Glucosyltransferases
;
metabolism
;
Hordeum
;
enzymology
;
genetics
;
Plants, Genetically Modified
;
enzymology
;
genetics
;
Seeds
;
enzymology
;
genetics
;
Sulfhydryl Compounds
;
metabolism
;
Thioredoxins
;
genetics
;
alpha-Amylases
;
metabolism
;
beta-Amylase
;
metabolism
7.Identification of glucose-responsive elements in the promoter of UDP-L-rhamnose biosynthesis gene RHM1 in Arabidopsis thaliana.
Qinmei JI ; Jinfeng WANG ; Ling JIANG ; Songdong SHEN ; Yunliu FAN ; Chunyi ZHANG
Chinese Journal of Biotechnology 2008;24(9):1531-1537
In plants, UDP-L-rhamnose is one of the major components of cell wall skeleton. Rhamnose synthase plays a key role in rhamnose synthesis which converts UDP-D-glucose into UDP-L-rhamnose in plants. In this study, we isolated the 1058 bp promoter region of the rhamnose synthase gene AtRHM1 from Arabidopsis genome by PCR, and created a series of deletions of AtRHM1 promoter ranging from -931 bp to +127 bp. The full length of the promoter and its deletion derivatives fused with GUS reporter gene were introduced into wild-type Arabidopsis by Agrobacterium-mediated transformation respectively. The GUS staining and GUS enzymatic activity assay showed that the expression of AtRHM1 is induced at transcriptional level by glucose and the regulatory elements involved in the glucose response are located in the region of -931 bp - -752 bp which contains three G-box motifs.
Arabidopsis
;
genetics
;
Arabidopsis Proteins
;
genetics
;
Glucosyltransferases
;
genetics
;
Plants, Genetically Modified
;
genetics
;
Promoter Regions, Genetic
;
Uridine Diphosphate Glucose
;
genetics
;
metabolism
;
Uridine Diphosphate Sugars
;
genetics
;
metabolism
8.Properties of sucrose phosphorylase from recombinant Escherichia coli and enzymatic synthesis of alpha-arbutin.
Yuejia WAN ; Jiangfeng MA ; Rong XU ; Aiyong HE ; Min JIANG ; Kequan CHEN ; Yin JIANG
Chinese Journal of Biotechnology 2012;28(12):1450-1459
Sucrose phosphorylase (EC 2.4.1.7, Sucrose phosphorylase, SPase) can be produced by recombinant strain Escherichia coli Rosetta(DE3)/Pet-SPase. Crude enzyme was obtained from the cells by the high pressure disruption and centrifugation. Sucrose phosphorylase was purified by Ni-NTA affinity column chromatography and desalted by ultrafiltration. The specific enzyme activity was 1.1-fold higher than that of the crude enzyme, and recovery rate was 82.7%. The purified recombinant SPase had a band of 59 kDa on SDS-PAGE. Thermostability of the enzyme was shown at temperatures up to 37 degrees C, and pH stability between pH 6.0 and 6.7. The optimum temperature and pH were 37 degrees C and 6.7, respectively. The K(m) of SPase for sucrose was 7.3 mmol/L, and Vmax was 0.2 micromol/(min x mg). Besides, alpha-arbutin was synthesized from sucrose and hydroquinone by transglucosylation with recombinant SPase. The optimal conditions for synthesis of alpha-arbutin were 200 U/mL of recombinant SPase, 20% of sucrose, and 1.6% hydroquinone at pH 6-6.5 and 25 degrees C for 21 h. Under these conditions, alpha-arbutin was obtained with a 78.3% molar yield with respect to hydroquinone, and the concentration of alpha-arbutin was about 31 g/L.
Arbutin
;
biosynthesis
;
Catalysis
;
Enzyme Stability
;
Escherichia coli
;
enzymology
;
genetics
;
Glucosyltransferases
;
biosynthesis
;
genetics
;
metabolism
;
Hydroquinones
;
metabolism
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
metabolism
;
Sucrose
;
metabolism
9.Molecular cloning and expression analysis of sucrose synthase gene from Dendrobium officinale.
Hengling MENG ; Chengli DUAN ; Fenghui XIAO ; Shengchao YANG ; Yinghong ZHA ; Guosong WEN
China Journal of Chinese Materia Medica 2011;36(7):833-837
OBJECTIVEClone of sucrose synthase of Dendribium officinale and expression analysis, to provide the theory basis for research the relationship between polysaccharide synthesis of D. officinale and sucrose synthase activity.
METHODAccording to homologous sequence of sucrose synthase gene on GenBank, application the technology of RT-PCR and RACE, clone the full length of D. officinale. Target gene amplified with T vector was transformed into competent E. coli. BL21, IPTG induced expression, SDS-PAGE analysis.
RESULTA full length cDNA encoding sucrose synthase was isolated from the D. officinale, named DOSS1, the GenBank accession number is HQ856835, the cDNA is 2781 bp in length containing an open reading frame of 2424 bp encoding 807 amino acids with a predicted molecular mass of 92.3 x 10(3), the deduced amino acid sequence of D. officinale sucrose synthase shares 95% identity with Mokara yellow (AF530568); shares 90% identity with Oncidium goldiana (AF530567); shares more than 80% with other monocotyledonous plants.
CONCLUSIONCloned the sucrose synthase gene and induced an obvious band successfully.
3' Untranslated Regions ; genetics ; 5' Untranslated Regions ; genetics ; Cloning, Molecular ; Dendrobium ; enzymology ; genetics ; metabolism ; Escherichia coli ; genetics ; Gene Expression Regulation, Plant ; Glucosyltransferases ; genetics ; metabolism ; Phylogeny ; Polysaccharides ; biosynthesis
10.Expression and study of the functional proteins of hepatitis C virus in CHO cell line.
Jia GUO ; Ran YAN ; Guo-Dong XU ; Cong-Yi ZHENG
Chinese Journal of Biotechnology 2007;23(6):995-999
Recently, the interactions between hepatitis C virus (HCV) genes and the host cell factors were the focus of this field. Cell factors in the different biochemical pathway were approved to be interfered when HCV infection. To make sure which HCV gene(s) was the major factor during the interaction process, ten eukaryotic expression plasmids containing different functional genes of HCV: Core, E1, E2, p7, NS2, NS3, NS4A, NS4B, NS5A and NS5B were transfected into the CHO-K1 cells respectively. Then ten stable cell lines expressing different HCV functional proteins were constructed under the selective pressure of G418. DNA and mRNA of the HCV genes were both detected by PCR and RT-PCR respectively in the corresponding stable cell lines, freezation and anabiosis would not lose the HCV genes. Besides, the El, E2 and NS5B proteins were detected by Western-blot which demonstrated that the HCV genes have formed stable expression in the host cells. The activity of UDP-glucose ceramide glucosyltransferase (UGCG) in the stable cell lines increased in different degree by TLC assay. For example, the activity of UGCG in CHO-K1-E2 and CHO-K1-p7 was doubled according to the control cells,and in CHO-K1-NS2 and CHO-K1-NS5A was about 1.6 times compared with the control cells. The establishment of the stable cell lines containing different single HCV gene will provide foundation for investigating the interactions between the virus and the host factors, and for the filtration of antiviral medicine.
Animals
;
CHO Cells
;
Cricetinae
;
Cricetulus
;
Glucosyltransferases
;
biosynthesis
;
metabolism
;
Hepacivirus
;
genetics
;
metabolism
;
Transfection
;
Viral Envelope Proteins
;
biosynthesis
;
genetics
;
Viral Nonstructural Proteins
;
biosynthesis
;
genetics
;
Viral Proteins
;
biosynthesis
;
genetics