1.Performance Evaluation of BAROZEN H, a Networking Blood Glucose Monitoring System for Medical Institutions.
Laboratory Medicine Online 2015;5(2):69-76
BACKGROUND: We evaluated the analytical performance of Barozen H (i-SENS Inc., Korea), a new glucometer equipped with networking function for medical institutions, according to the ISO 15197:2003 and ISO/DIS 15197:2011 guidelines. METHODS: We measured the precision of 10 Barozen H glucometers, in terms of repeatability and intermediate precision, and determined their accuracy relative to that of automatic chemistry analyzer AU5421 (Beckman Coulter, USA). Three other glucometers-Precision PCx (Abbott, USA), Glucocard Sigma (Arkray, Japan), and SureStep Flexx (Johnson & Johnson, USA) were also evaluated, and their accuracies and hematocrit interferences were compared. RESULTS: The standard deviation and coefficient of variation of Barozen H for repeatability and intermediate precision were 0.11-0.15 mmol/L and 2.3-3.6%, respectively. With respect to accuracy, in accordance with ISO 15197:2003 criteria, Barozen H yielded 98.0% of results within +/-0.83 mmol/L or +/-20%. Further, per the ISO/DIS 15197:2011 criteria, 95.2% of results were within +/-0.83 mmol/L or +/-15%; Barozen H was the only glucometer satisfying the more stringent ISO/DIS 15197:2011 criteria. Error grid analysis showed that all results from Barozen H were in zone A, indicating its excellent clinical accuracy. Hematocrit, ranging from 20% to 60% did not cause any significant interference. CONCLUSIONS: Barozen H showed excellent analytical performance, and it was the most clinically accurate glucometer tested. It can be expected to provide reliable results satisfying ISO/DIS 15197:2011 as well as ISO 15197:2003 criteria.
Blood Glucose Self-Monitoring
;
Blood Glucose*
;
Chemistry
;
Diabetes Mellitus
;
Glucose Oxidase
;
Hematocrit
;
Point-of-Care Systems
2.Performance Evaluation of BAROZEN H, a Networking Blood Glucose Monitoring System for Medical Institutions.
Laboratory Medicine Online 2015;5(2):69-76
BACKGROUND: We evaluated the analytical performance of Barozen H (i-SENS Inc., Korea), a new glucometer equipped with networking function for medical institutions, according to the ISO 15197:2003 and ISO/DIS 15197:2011 guidelines. METHODS: We measured the precision of 10 Barozen H glucometers, in terms of repeatability and intermediate precision, and determined their accuracy relative to that of automatic chemistry analyzer AU5421 (Beckman Coulter, USA). Three other glucometers-Precision PCx (Abbott, USA), Glucocard Sigma (Arkray, Japan), and SureStep Flexx (Johnson & Johnson, USA) were also evaluated, and their accuracies and hematocrit interferences were compared. RESULTS: The standard deviation and coefficient of variation of Barozen H for repeatability and intermediate precision were 0.11-0.15 mmol/L and 2.3-3.6%, respectively. With respect to accuracy, in accordance with ISO 15197:2003 criteria, Barozen H yielded 98.0% of results within +/-0.83 mmol/L or +/-20%. Further, per the ISO/DIS 15197:2011 criteria, 95.2% of results were within +/-0.83 mmol/L or +/-15%; Barozen H was the only glucometer satisfying the more stringent ISO/DIS 15197:2011 criteria. Error grid analysis showed that all results from Barozen H were in zone A, indicating its excellent clinical accuracy. Hematocrit, ranging from 20% to 60% did not cause any significant interference. CONCLUSIONS: Barozen H showed excellent analytical performance, and it was the most clinically accurate glucometer tested. It can be expected to provide reliable results satisfying ISO/DIS 15197:2011 as well as ISO 15197:2003 criteria.
Blood Glucose Self-Monitoring
;
Blood Glucose*
;
Chemistry
;
Diabetes Mellitus
;
Glucose Oxidase
;
Hematocrit
;
Point-of-Care Systems
3.Covalent immobilization of glucose oxidase within organic media.
Tao ZHOU ; Xiongjun ZHU ; Jianhua SU ; Dongsheng YAO ; Daling LIU
Chinese Journal of Biotechnology 2012;28(4):476-487
Activity losing during the covalent immobilization of enzyme is a serious problem. Here we studied organic phase immobilization by using glucose oxidase (GOD) as a model. After lyophilized at optimum pH, GOD is covalently immobilized onto glutaraldhyde-activated chitosan microsphere carrier under the condition of water, 1, 4-dioxane, ether and ethanol separately. The special activities, enzyme characterization and kinetic parameters are determined. Results show that all of the organic phase immobilized GODs have higher special activities and larger K(cat) than that of aqueous phase. Under the conditions of 0.1% of glutaraldehyde, 1.6% moisture content with 80 mg of GOD added to per gram of carrier, 2.9-fold of the special activity and 3-fold of the effective activity recovery ratio were obtained, and 3-fold of the residue activity was demonstrated after 7 runs when compares 1, 4-dioxane phase immobilized GOD with water phase immobilized one. In addition, kinetic study shows that 1,4-dioxane immobilized GOD (Km(app) = 5.63 mmol/L, V(max) = 1.70 micromol/(min x mg GOD), K(cat) = 0.304 s(-1) was superior to water immobilized GOD (Km(app) = 7.33 mmol/L, V(max) = 1.02 micromol/(min x mg GOD), K(cat) = 0.221 s(-1)). All above indicated GOD immobilized in proper organic media presented a better activity with improved catalytic performance. Organic phase immobilization might be one of the ways to overcome the conformational denature of enzyme protein during covalent modification.
Chitosan
;
chemistry
;
Dioxanes
;
chemistry
;
Enzymes, Immobilized
;
chemistry
;
Freeze Drying
;
Glucose Oxidase
;
chemistry
;
Kinetics
;
Microspheres
4.Structural regulation by calcium ion in preparing cross-linked enzyme aggregates.
Xiaoqi HAN ; Shu BAI ; Qinghong SHI
Chinese Journal of Biotechnology 2016;32(12):1676-1684
We studied the effect of calcium ion on particle size and pore structure of cross-linked enzyme aggregates (CLEAs) of glucose oxidase, with activity and stability of the enzyme as evaluation criteria. With calcium ion to prepare CLEA significantly decreased particle sizes of CLEAs whilst the pore structures of CLEAs gradually disappeared with the increase of calcium concentration. When glucose oxidase was precipitated at 0.1 mmol/L Ca²⁺, glucose oxidase in CLEA showed the definitive pore structure. Moreover, glucose oxidase activity in CLEA with Ca²⁺ was 1.69 times higher than that without Ca²⁺. Even at Ca²⁺ as high as 1.0 mmol/L, glucose oxidase activity in CLEA was 42% higher than that of CLEA without Ca²⁺. Furthermore, CLEA prepared with 0.1 mmol/L Ca²⁺ not only exhibited higher substrate conversion and operational stability, but also increased the maximum reaction speed. Therefore, calcium ion improved the performance of glucose oxidase in CLEAs.
Calcium
;
chemistry
;
Cross-Linking Reagents
;
Enzyme Stability
;
Enzymes, Immobilized
;
Glucose Oxidase
;
chemistry
;
Oxidation-Reduction
;
Particle Size
5.Progress in the application of conducting polymer in glucose biosensor.
Cang WANG ; Dajing CHEN ; Liling CHENG ; Yuquan CHEN ; Wei CHEN ; Min PAN
Journal of Biomedical Engineering 2013;30(5):1112-1116
Conducting polymers have stable long-chain structure and good electrical conductivity. They have been used in various types of biosensors because of their excellent characteristics of the immobilization and electrical signal transmission. In recent years, researchers mainly study on improving its micro-nano structures and its signal conductivity to enhance its effect on the enzyme immobilization and signal conductive properties. This paper reviews firstly the application of conducting polymer on enzyme-immobilized glucose biosensor and the new technologies and methods in this field. This paper also points out the future application of conducting polymers in enzyme immobilization and biosensor preparation areas.
Biosensing Techniques
;
methods
;
trends
;
Blood Glucose
;
metabolism
;
Electric Conductivity
;
Enzymes, Immobilized
;
Glucose Oxidase
;
metabolism
;
Nanostructures
;
Polymers
;
chemistry
6.Application of hyaluronic acid microneedles in insulin intelligent delivery system for the treatment of diabetes.
Yongcheng XIAO ; Xiaobin WANG ; Deming XIE
Chinese Journal of Biotechnology 2022;38(9):3433-3442
In this study, insulin (insulin, INS)/Ca3PO4 complex and glucose oxidase (glucose oxidase, GOx)/Cu3(PO4)2 complex were prepared by coprecipitation method. The mineralized insulin (mineralized insulin, m-INS) showed irregular crystalline clusters, and the mineralized glucose oxidase (m-GOx) showed flower spherical morphology, with a diameter of about 1-2 μm. In vitro simulated release experiment showed that m-INS released INS as the pH value of the medium decreased. When the pH value was 4.5, the release amount reached 96.68%. The enzyme activity detection experiment showed that the enzyme activity stability of m-GOx was higher than that of free GOx. It still maintained high activity after 10 days at room temperature, while the activity of GOx was less than 60%. The glucose solution was prepared to simulate the state of normal blood glucose (5.6 mmol/L) and hyperglycemia (22.2 mmol/L). When m-INS and m-GOx were added to the glucose solution, the release amount of INS showed a significant glucose concentration dependence. The higher the glucose concentration, the greater the release amount and release rate of INS. Finally, m-INS, m-GOx and hyaluronic acid (HA) solution were mixed to prepare HA microneedle arrays loaded with m-INS and m-GOx. Type 1 diabetes mice were constructed to evaluate the effect of drug-loaded HA microarray on blood glucose control in diabetic rats. The results show that the HA microneedles loaded with m-INS/m-GOx could deliver drugs effectively. The average blood glucose concentration in diabetic rats dropped to about 7 mmol/L within 1 h, normal blood glucose concentration could be maintained for 10 h, and the overall blood glucose concentration was lower than the level before administration for 36 hours. Compared with HA microneedles loaded with INS only, m-ins microneedles showed better glucose tolerance, longer-lasting glucose control effect and less risk of hypoglycemia. Compared with other sustained-release systems, the preparation process of the core components in this study is simple, efficient, safe and effective, and has great commercial potential.
Animals
;
Blood Glucose
;
Delayed-Action Preparations/therapeutic use*
;
Diabetes Mellitus, Experimental/drug therapy*
;
Drug Delivery Systems/methods*
;
Glucose Oxidase/chemistry*
;
Hyaluronic Acid
;
I Blood-Group System
;
Insulin/therapeutic use*
;
Mice
;
P Blood-Group System
;
Rats