1.Protopanaxadiol-type ginsenoside hydrolases and their application in the preparation of ginsenoside Compound K: a review.
Wenhua YANG ; Qiuya GU ; Xiaobin YU
Chinese Journal of Biotechnology 2023;39(3):978-992
Ginsenoside Compound K (CK) has anti-cancer and anti-inflammatory pharmacological activities. It has not been isolated from natural ginseng and is mainly prepared by deglycosylation of protopanaxadiol. Compared with the traditional physicochemical preparation methods, the preparation of CK by hydrolysis with protopanaxadiol-type (PPD-type) ginsenoside hydrolases has the advantages of high specificity, environmental-friendliness, high efficiency and high stability. In this review, the PPD-type ginsenoside hydrolases were classified into three categories based on the differences in the glycosyl-linked carbon atoms of the hydrolase action. It was found that most of the hydrolases that could prepare CK were PPD-type ginsenoside hydrolase type Ⅲ. In addition, the applications of hydrolases in the preparation of CK were summarized and evaluated to facilitate large-scale preparation of CK and its development in the food and pharmaceutical industries.
Ginsenosides/pharmacology*
;
Hydrolases
;
Sapogenins/chemistry*
2.Ginsenoside Rg1 Reduces Cardiotoxicity While Increases Cardiotonic Effect of Aconitine in vitro.
Xin XU ; Xiao-Fang XIE ; Yan-Hong DONG ; Hui-Qiong ZHANG ; Cheng PENG
Chinese journal of integrative medicine 2022;28(8):693-701
OBJECTIVE:
To explore the synergic mechanism of ginsenoside Rg1 (Rg1) and aconitine (AC) by acting on normal neonatal rat cardiomyocytes (NRCMs) and pentobarbital sodium (PS)-induced damaged NRCMs.
METHODS:
The toxic, non-toxic, and effective doses of AC and the most suitable compatibility concentration of Rg1 for both normal and damaged NRCMs exposed for 1 h were filtered out by 3- (4,5)-dimethylthiahiazo (-z-y1)-3,5-diphenytetrazoliumromide, respectively. Then, normal NRCMs or impaired NRCMs were treated with chosen concentrations of AC alone or in combination with Rg1 for 1 h, and the cellular activity, cellular ultrastructure, apoptosis, leakage of acid phosphatase (ACP) and lactate dehydrogenase (LDH), intracellular sodium ions [Na+], potassium ions [K+] and calcium ions [Ca2+] levels, and Nav1.5, Kv4.2, and RyR2 genes expressions in each group were examined.
RESULTS:
For normal NRCMs, 3000 µ mol/L AC significantly inhibited cell viability (P<0.01), promoted cell apoptosis, and damaged cell structures (P<0.05), while other doses of AC lower than 3000 µ mol/L and the combinations of AC and Rg1 had little toxicity on NRCMs. Compared with AC acting on NRCMs alone, the co-treatment of 3000 and 10 µ mol/L AC with 1 µ mol/L Rg1 significantly decreased the level of intracellular Ca2+ (P<0.01 or P<0.05), and the co-treatment of 3000 µ mol/L AC with 1 µ mol/L Rg1 significantly decreased the level of intracellular Ca2+ via regulating Nav1.5, RyR2 expression (P<0.01). For damaged NRCMs, 1500 µ mol/L AC aggravated cell damage (P<0.01), and 0.1 and 0.001 µ mol/L AC showed moderate protective effect. Compared with AC used alone, the co-treatment of Rg1 with AC reduced the cell damage, 0.1 µ mol/L AC with 1 µ mol/L Rg1 significantly inhibited the level of intracellular Na+ (P<0.05), 1500 µ mol/L AC with 1 µ mol/L Rg1 significantly inhibited the level of intracellular K+ (P<0.01) via regulating Nav1.5, Kv4.2, RyR2 expressions in impaired NRCMs.
CONCLUSION
Rg1 inhibited the cardiotoxicity and enhanced the cardiotonic effect of AC via regulating the ion channels pathway of [Na+], [K+], and [Ca2+].
Aconitine/pharmacology*
;
Animals
;
Apoptosis
;
Cardiotonic Agents/pharmacology*
;
Cardiotoxicity/drug therapy*
;
Cell Survival
;
Ginsenosides/pharmacology*
;
Rats
3.The osteogenesis of Ginsenoside Rb1 incorporated silk/micro-nano hydroxyapatite/sodium alginate composite scaffolds for calvarial defect.
Yuqiong WU ; Jiahui DU ; Qianju WU ; Ao ZHENG ; Lingyan CAO ; Xinquan JIANG
International Journal of Oral Science 2022;14(1):10-10
Ginsenoside Rb1, the effective constituent of ginseng, has been demonstrated to play favorable roles in improving the immunity system. However, there is little study on the osteogenesis and angiogenesis effect of Ginsenoside Rb1. Moreover, how to establish a delivery system of Ginsenoside Rb1 and its repairment ability in bone defect remains elusive. In this study, the role of Ginsenoside Rb1 in cell viability, proliferation, apoptosis, osteogenic genes expression, ALP activity of rat BMSCs were evaluated firstly. Then, micro-nano HAp granules combined with silk were prepared to establish a delivery system of Ginsenoside Rb1, and the osteogenic and angiogenic effect of Ginsenoside Rb1 loaded on micro-nano HAp/silk in rat calvarial defect models were assessed by sequential fluorescence labeling, and histology analysis, respectively. It revealed that Ginsenoside Rb1 could maintain cell viability, significantly increased ALP activity, osteogenic and angiogenic genes expression. Meanwhile, micro-nano HAp granules combined with silk were fabricated smoothly and were a delivery carrier for Ginsenoside Rb1. Significantly, Ginsenoside Rb1 loaded on micro-nano HAp/silk could facilitate osteogenesis and angiogenesis. All the outcomes hint that Ginsenoside Rb1 could reinforce the osteogenesis differentiation and angiogenesis factor's expression of BMSCs. Moreover, micro-nano HAp combined with silk could act as a carrier for Ginsenoside Rb1 to repair bone defect.
Alginates/pharmacology*
;
Animals
;
Bone Regeneration
;
Cell Differentiation
;
Durapatite/pharmacology*
;
Ginsenosides
;
Osteogenesis
;
Rats
;
Silk/pharmacology*
;
Tissue Scaffolds
4.Anti-feeding activity of total ginsenoside from Panax ginseng to 4th-instar Mythimna separata larvae.
Shi-qiang TAN ; Lin MA ; Yong-hua XU ; Feng-jie LEI ; Ai-hua ZHANG ; Lian-xue ZHANG
China Journal of Chinese Materia Medica 2015;40(14):2787-2791
This paper is in order to study the anti-feeding and growth inhibition activity of toatal ginsenoside of ginseng stems and leaves against 4th-instar Mythimna separata larvae. Simulating natural growing condition indoors, on the base, To study the anti-feeding and growth inhibition activity of toatal ginsenoside against 4th-instar M. separata larvae by leaf disc test. The toatal ginsenoside appeared to be of significant antifeeding activity against 4th-instar M. separata larvae. The 4th-instar M. separata larvae fed on the leaves of Sorghum bicolor treated with 20, 10, 5 g · L(-1) toatal ginsenoside. At 8 h, non-selective anti-feeding rate were 88.67%, 64.40% and 47.36%, and selective anti-feeding rate were 62.49% , 44.29% and 34.19%; Compared with the photographic, The toatal ginsenoside conld make the development period had prolonged 13h in treated group. The toatal ginsenoside had significant inhibition effect on feeding and growth and development against 4th-instar M. separata larvae, and inhibition effect increases as the increase of concentration ginsenoside.
Animals
;
Ginsenosides
;
pharmacology
;
Insecticides
;
pharmacology
;
Larva
;
Moths
;
growth & development
;
Panax
;
chemistry
5.Effect of ginsenoside on apoptosis of human leukemia-60 cells.
Xiao-Meng LIU ; Jiao-Ling CAO ; Yu-Zhu ZANG
Chinese Journal of Contemporary Pediatrics 2012;14(10):792-795
OBJECTIVETo study the effect of ginsenoside on apoptosis of human leukemia-60 (HL-60) cells and its mechanism.
METHODSMTT cytotoxicity assay was used to determine the growth inhibition activity of ginsenoside (100, 50, 25, 12.5, 6.25, 3.125 and 1.5625 μmol/L) on HL-60 cells. The apoptosis of HL-60 cells after treatment with ginsenoside (0,5,10 and 20 μmol/L) was determined by Annexin V-FITC/PI staining and flow cytometry. The cleavage of total proteins by caspase-8, caspase-9 and caspase-3 was evaluated by Western blot. The cleavage of caspase-3 protein was detected by Western blot after treatment with 10 μmol/L ginsenoside and caspase-8 and 9 inhibitors.
RESULTSGinsenoside had potent cytotoxicity on HL-60 cells, with an IC50 value of 7.3±1.2 μmol/L. After treatment with ginsenoside (0, 5, 10 and 20 μmol/L) for 48 hours, the apoptotic rate displayed a dose dependency, as shown by flow cytometry, with significant differences between the groups (F=12.67, P<0.01). Western blot showed that there were caspase-9 and caspase-3 cleavage bands, but without caspase-8 cleavage band. The specific inhibitor of caspase-9 Z-LEHD-FMK could block the caspase-3 cleavage induced by 10 μmol/L ginsenoside, but the specific inhibitor of caspase-8 Z-IETD-FMK did not have this effect.
CONCLUSIONSGinsenoside can induce apoptosis of HL-60 cells, which may be related to a mitochondria-dependent pathway.
Apoptosis ; drug effects ; Caspase 9 ; physiology ; Caspase Inhibitors ; pharmacology ; Ginsenosides ; pharmacology ; HL-60 Cells ; Humans
6.Research progress on the pharmacological effects and chemical constituents of Pien Tze Huang and its potential Q-markers.
Zhaomin DONG ; Hong WANG ; Guangji WANG
Chinese Journal of Natural Medicines (English Ed.) 2023;21(9):658-669
Pien Tze Huang (PTH) was documented as an imperial prescription composed of Notoginseng Radix, Calculus Bovis, Snake Gallbladder, and Musk. It is famous in China and Asian countries due to its excellent effects in heat clearing, detoxifying, swelling reduction, and pain relieving. Modern pharmacological studies demonstrate that PTH shows excellent effects against various inflammatory diseases, liver diseases, and cancers. This review summaries the pharmacological effects, clinical applications, and mainchemical components of PTH. More importantly, its potential quality markers (Q-markers) were then analyzed based on the "five principles" of Q-markers under the guidance of Traditional Chinese Medicine theory, including transfer and traceability, specificity, efficacy, compatibility, and measurability. As a result, ginsenosides Rb1, ginsenoside Rg1, ginsenoside Rd, ginsenoside Re, notoginsenoside R1, dencichine, bilirubin, biliverdin, taurocholic acid, and muscone are considered as the Q-markers of PTH. These findings will provide guidance and assistance for the construction of a quality control system for PTH.
Humans
;
Ginsenosides/pharmacology*
;
Drugs, Chinese Herbal/pharmacology*
;
Medicine, Chinese Traditional
;
Neoplasms
;
Quality Control
;
China
7.Chemotactic response of ginseng endophyte to ginseng root exudates.
Xin-Xin ZHANG ; Ai-Hua ZHANG ; Feng-Jie LEI ; Li CAI ; Zhou-Yang XU ; Zhi-Qing LIU ; Lian-Xue ZHANG
China Journal of Chinese Materia Medica 2019;44(24):5358-5362
The ginseng endophytic bacteria F1 is a potential biocontrol agent for ginseng bacterial soft rot. In this paper,the chemotactic response of ginseng endophytic bacteria F1 on 8 kinds of sugar and amino acids was detected by capillary method to explore its biocontrol mechanism. The chemotactic response of F1 strain to 4 kinds of better chemotaxis substances such as glucose,glycine,L-rhamnoseand L-glutamic acid under parameters( concentration,time,temperature and pH) was studied. The results showed that under the same experimental conditions( incubation temperature 25 ℃,incubation time 60 min,chemotaxis concentration 1 mg·L~(-1)),ginseng endophytic bacteria F1 showed different degrees of response to the eight substances tested. The phenomenon of positive chemotaxis of the measured sugars and amino acids was obvious,and the chemotactic response to total ginsenosides was low. The degree of chemotaxis response is positively correlated with the chemotaxis index within a certain range of parameters,but as the temperature,p H,time,concentration and other factors continue to increase,the chemotaxis effect decreases,and F1 optimizes the chemotaxis of the four substances. The parameters are as follows: glucose: 25 ℃,10 mg·L~(-1),45 min,pH 7; glycine: 30 ℃,10 mg·L~(-1),75 min,pH7; L-rhamnose: 30 ℃,1 mg·L~(-1),30 min,pH 6; L-glutamic acid: 25 ℃,0. 1 mg·L~(-1),45 min,pH 8. The chemotactic response is more sensitive to low concentrations of chemotactic substances.
Amino Acids/pharmacology*
;
Bacteria/drug effects*
;
Chemotaxis
;
Endophytes/physiology*
;
Ginsenosides/pharmacology*
;
Panax/chemistry*
;
Plant Exudates/pharmacology*
;
Sugars/pharmacology*
8.Effect of ginsenosides on level of sex hormone receptors in human liver cell line HL-7702.
Yong LI ; Da-li ZHANG ; Peng WANG
Chinese Journal of Integrated Traditional and Western Medicine 2009;29(12):1110-1113
OBJECTIVETo investigate the effect of ginsenoside (GSS) in regulating level of sex hormone receptors in human liver cell line HL-7702.
METHODSThe growth of HL-7702 were detected by MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay for choosing the available concentration of GSS; and the effect of GSS on sex hormone receptors in HL-7702 cells were detected by immuno-histochemistry, Western blot and RT-PCR.
RESULTSGSS significantly enhance the protein and mRNA expressions of estrogen receptor (ER), progesterone receptor (PR), androgen receptor (AR) in HL7702 cell in a dose-dependent manner, the levels of expressions in the GSS treated group were higher than those in the solvent control group respectively (P < 0.05).
CONCLUSIONGSS can up-regulate the protein and mRNA expressions of sex hormone receptors in HL-7702.
Cell Line ; Ginsenosides ; pharmacology ; Hepatocytes ; cytology ; drug effects ; metabolism ; Humans ; Receptors, Estrogen ; metabolism
10.Research of anti-aging mechanism of ginsenoside Rg1 on brain.
Cheng-peng LI ; Meng-si ZHANG ; Jun LIU ; Shan GENG ; Jing LI ; Jia-hong ZHU ; Yan-yan ZHANG ; Yan-yan JIA ; Lu WANG ; Shun-he WANG ; Ya-ping WANG
China Journal of Chinese Materia Medica 2014;39(22):4442-4447
Neurodegenerative disease is common and frequently occurs in elderly patients. Previous studies have shown that ginsenoside Rg1 was able to inhibit senescent of brain, but the mechanism on the brain during the treatment remains elucidated. To study the mechanism of ginsenoside Rg1 in the process of anti-aging of brain, forty male SD rats were randomly divided into normal group, Rg1 normal group, brain aging model group and Rg1 brain aging model group, each group with 10 rats (brain aging model group: subcutaneous injection of D-galactose (120 mg kg(-1)), qd for 42 consecutive days; Rg1 brain aging model group: while copying the same test as that of brain aging model group, begin intraperitoneal injection of ginsenosides Rg1 (20 mg x kg(-1)) qd for 27 d from 16 d. Rg1 normal group: subcutaneous injection of the same amount of saline; begin intraperitoneal injection of ginsenosides Rg1 (20 mg x kg(-1)) qd for 27 d from 16 d. Normal: injected with an equal volume of saline within the same time. Perform the related experiment on the second day after finishing copying the model or the completion of the first two days of drug injections). Learning and memory abilities were measured by Morris water maze. The number of senescent cells was detected by SA-beta-Gal staining while the level of IL-1 and IL-6 proinflammatory cytokines in hippocampus were detected by ELISA. The activities of SOD, contents of GSH in hippo- campus were quantified by chromatometry. The change of telomerase activities and telomerase length were performed by TRAP-PCR and southern blotting assay, respectively. It is pointed that, in brain aging model group, the spatial learning and memory capacities were weaken, SA-beta-Gal positive granules increased in section of brain tissue, the activity of antioxidant enzyme SOD and the contents of GSH decreased in hippocampus, the level of IL-1 and IL-6 increased in hippocampus, while the length of telomere and the activity of telomerase decreased in hippocampus. Rats of Rg1 brain aging group had their spatial learning and memory capacities enhanced, SA-beta-Gal positive granules in section of brain tissue decreased, the activity of antioxidant enzyme SOD and the contents of GSH increased in hippocampus, the level of IL-1 and IL-6 in hippocampus decreased, the length contraction of telomere suppressed while the change of telomerase activity increased in hippocampus. Compared with that of normal group, the spatial learning and memory capacities were enhanced in Rg1 normal group, SA-beta-Gal positive granules in section of brain tissue decreased in Rg1 normal group, the level of IL-1 and IL-6 in hippocampus decreased in Rg1 normal group. The results indicated that improvement of antioxidant ability, regulating the level of proinflammatory cytokines and regulation of telomerase system may be the underlying anti-aging mechanism of Ginsenoside Rg1.
Aging
;
drug effects
;
Animals
;
Brain
;
drug effects
;
Ginsenosides
;
pharmacology
;
Male
;
Rats
;
Rats, Sprague-Dawley