1.Isolation and Cytotoxic Potency of Endophytic Fungi Associated with Dysosma difformis, a Study for the Novel Resources of Podophyllotoxin
Hoa Thi TRAN ; Giang Thu NGUYEN ; Hong Ha Thi NGUYEN ; Huyen Thi TRAN ; Quang Hong TRAN ; Quang Ho TRAN ; Ngoc Thi NINH ; Phat Tien DO ; Ha Hoang CHU ; Ngoc Bich PHAM
Mycobiology 2022;50(5):389-398
Endophytic fungi are promising sources for the production of podophyllotoxin-an important anticancer compound, replacing depleted medical plants. In this study, the endophytes associated with Dysosma difformis-an ethnomedicinal plant species were isolated to explore novel sources of podophyllotoxin. Fifty-three endophytic fungi were isolated and identified by morphological observation and ITS-based rDNA sequencing, assigning them to 27 genera in 3 divisions. Fusarium was found the most prevalent genus with a colonization frequency of 11.11%, followed by Trametes (9.26%) and Penicillium (7.41%). Phylogenetic trees were constructed for the endophytic fungi community in two collection sites, Ha Giang and Lai Chau, revealing the adaptation of the species to the specific tissues and habitats. Cytotoxic activity of endophytic fungal extracts was investigated on cancer cell lines such as SK-LU-1, HL-60, and HepG2, demonstrating strong anti-cancer activity of six isolates belonging to Penicillium, Trametes, Purpureocillium, Aspergillus, and Ganoderma with IC 50 value of lower than 10 10 µg/mL. The presence of podophyllotoxin was indicated in Penicillium, Trametes, Aspergillus and for the first time in Purpureocillium and Ganoderma via high-performance liquid chromatography, which implied them as a potential source of this anticancer compound.
2.New oligomeric neolignans from the leaves of Magnolia officinalis var. biloba.
Van-Tuan VU ; Xiao-Juan XU ; Kang CHEN ; Manh-Tuyen NGUYEN ; Bich-Ngoc NGUYEN ; Giang-Nam PHAM ; Ling-Yi KONG ; Jian-Guang LUO
Chinese Journal of Natural Medicines (English Ed.) 2021;19(7):491-499
Six new oligomeric neolignans including two trimeric neolignans (1 and 2) and four dimeric neolignans (3-6) were isolated from the leaves of Magnolia officinalis var. biloba. Their structures were determined based on HR-ESIMS and NMR data, as well as electronic circular dichroism (ECD) calculations. Compound 1 is formed from two obovatol moieties directly linked to an aromatic ring of the remaining obovatol moiety, which is an unprecedented type of linkage between monomers. All isolates were assessed for their inhibitory effects on NO production in LPS-stimulated RAW 264.7 macrophage cells. Compounds 1 and 3 showed significantly inhibitory activities with IC
Animals
;
Lignans/pharmacology*
;
Magnolia/chemistry*
;
Mice
;
Molecular Structure
;
Phytochemicals/pharmacology*
;
Plant Extracts/pharmacology*
;
Plant Leaves/chemistry*
;
RAW 264.7 Cells