1.Biological functions of histidine-dipeptides and metabolic syndrome.
Byeng Chun SONG ; Nam Seok JOO ; Giancarlo ALDINI ; Kyung Jin YEUM
Nutrition Research and Practice 2014;8(1):3-10
The rapid increase in the prevalence of metabolic syndrome, which is associated with a state of elevated systemic oxidative stress and inflammation, is expected to cause future increases in the prevalence of diabetes and cardiovascular diseases. Oxidation of polyunsaturated fatty acids and sugars produces reactive carbonyl species, which, due to their electrophilic nature, react with the nucleophilic sites of certain amino acids. This leads to formation of protein adducts such as advanced glycoxidation/lipoxidation end products (AGEs/ALEs), resulting in cellular dysfunction. Therefore, an effective reactive carbonyl species and AGEs/ALEs sequestering agent may be able to prevent such cellular dysfunction. There is accumulating evidence that histidine containing dipeptides such as carnosine (beta-alanyl-L-histidine) and anserine (beta-alanyl-methyl-L-histidine) detoxify cytotoxic reactive carbonyls by forming unreactive adducts and are able to reverse glycated protein. In this review, 1) reaction mechanism of oxidative stress and certain chronic diseases, 2) interrelation between oxidative stress and inflammation, 3) effective reactive carbonyl species and AGEs/ALEs sequestering actions of histidine-dipeptides and their metabolism, 4) effects of carnosinase encoding gene on the effectiveness of histidine-dipeptides, and 5) protective effects of histidine-dipeptides against progression of metabolic syndrome are discussed. Overall, this review highlights the potential beneficial effects of histidine-dipeptides against metabolic syndrome. Randomized controlled human studies may provide essential information regarding whether histidine-dipeptides attenuate metabolic syndrome in humans.
Amino Acids
;
Anserine
;
Carbohydrates
;
Cardiovascular Diseases
;
Carnosine
;
Chronic Disease
;
Dipeptides
;
Fatty Acids, Unsaturated
;
Histidine
;
Humans
;
Inflammation
;
Metabolism
;
Oxidative Stress
;
Prevalence
;
Sequestering Agents
2.Bioavailability of plant pigment phytochemicals in Angelica keiskei in older adults: A pilot absorption kinetic study.
Camila R CORREA ; C Y Oliver CHEN ; Giancarlo ALDINI ; Helen RASMUSSEN ; Carlos F RONCHI ; Carolina BERCHIERI-RONCHI ; Soo Muk CHO ; Jeffrey B BLUMBERG ; Kyung Jin YEUM
Nutrition Research and Practice 2014;8(5):550-557
BACKGROUND/OBJECTIVES: Angelica keiskei is a green leafy vegetable rich in plant pigment phytochemicals such as flavonoids and carotenoids. This study examined bioavailability of flavonoids and carotenoids in Angelica keiskei and the alteration of the antioxidant performance in vivo. SUBJECTS AND MATERIALS: Absorption kinetics of phytochemicals in Angelica keiskei were determined in healthy older adults (> 60 y, n = 5) and subjects with metabolic syndrome (n = 5). Subjects consumed 5 g dry Angelica keiskei powder encapsulated in gelatin capsules with a low flavonoid and carotenoid liquid meal. Plasma samples were collected at baseline, 0.5, 1, 2, 3, 4, 5, 6, 7, and 8 h. Samples were analyzed for flavonoids and carotenoids using HPLC systems with electrochemical and UV detection, respectively, and for total antioxidant performance by fluorometry. RESULTS: After ingestion of Angelica keiskei increases in plasma quercetin concentrations were observed at 1-3 and 6-8 hr in the healthy group and at all time points in the metabolic syndrome group compared to baseline (P < 0.05). Plasma lutein concentrations were significantly elevated in both the healthy and metabolic syndrome groups at 8 hr (P < 0.05). Significant increases in total antioxidant performance were also observed in both the healthy and the metabolic syndrome groups compared to baseline (P < 0.05). CONCLUSIONS: Findings of this study clearly demonstrate the bioavailability of phytonutrients of Angelica keiskei and their ability to increase antioxidant status in humans.
Absorption*
;
Adult*
;
Angelica*
;
Biological Availability*
;
Capsules
;
Carotenoids
;
Chromatography, High Pressure Liquid
;
Eating
;
Flavonoids
;
Fluorometry
;
Gelatin
;
Humans
;
Kinetics
;
Lutein
;
Meals
;
Phytochemicals*
;
Plants*
;
Plasma
;
Quercetin
;
Vegetables