1.Bend family proteins mark chromatin boundaries and synergistically promote early germ cell differentiation.
Guang SHI ; Yaofu BAI ; Xiya ZHANG ; Junfeng SU ; Junjie PANG ; Quanyuan HE ; Pengguihang ZENG ; Junjun DING ; Yuanyan XIONG ; Jingran ZHANG ; Jingwen WANG ; Dan LIU ; Wenbin MA ; Junjiu HUANG ; Zhou SONGYANG
Protein & Cell 2022;13(10):721-741
Understanding the regulatory networks for germ cell fate specification is necessary to developing strategies for improving the efficiency of germ cell production in vitro. In this study, we developed a coupled screening strategy that took advantage of an arrayed bi-molecular fluorescence complementation (BiFC) platform for protein-protein interaction screens and epiblast-like cell (EpiLC)-induction assays using reporter mouse embryonic stem cells (mESCs). Investigation of candidate interaction partners of core human pluripotent factors OCT4, NANOG, KLF4 and SOX2 in EpiLC differentiation assays identified novel primordial germ cell (PGC)-inducing factors including BEN-domain (BEND/Bend) family members. Through RNA-seq, ChIP-seq, and ATAC-seq analyses, we showed that Bend5 worked together with Bend4 and helped mark chromatin boundaries to promote EpiLC induction in vitro. Our findings suggest that BEND/Bend proteins represent a new family of transcriptional modulators and chromatin boundary factors that participate in gene expression regulation during early germline development.
Animals
;
Cell Differentiation/genetics*
;
Chromatin/metabolism*
;
Embryonic Stem Cells
;
Germ Cells/metabolism*
;
Germ Layers/metabolism*
;
Mice
2.Pluripotent stem cells secrete Activin A to improve their epiblast competency after injection into recipient embryos.
Jinzhu XIANG ; Suying CAO ; Liang ZHONG ; Hanning WANG ; Yangli PEI ; Qingqing WEI ; Bingqiang WEN ; Haiyuan MU ; Shaopeng ZHANG ; Liang YUE ; Genhua YUE ; Bing LIM ; Jianyong HAN
Protein & Cell 2018;9(8):717-728
It is not fully clear why there is a higher contribution of pluripotent stem cells (PSCs) to the chimera produced by injection of PSCs into 4-cell or 8-cell stage embryos compared with blastocyst injection. Here, we show that not only embryonic stem cells (ESCs) but also induced pluripotent stem cells (iPSCs) can generate F0 nearly 100% donor cell-derived mice by 4-cell stage embryo injection, and the approach has a "dose effect". Through an analysis of the PSC-secreted proteins, Activin A was found to impede epiblast (EPI) lineage development while promoting trophectoderm (TE) differentiation, resulting in replacement of the EPI lineage of host embryos with PSCs. Interestingly, the injection of ESCs into blastocysts cultured with Activin A (cultured from 4-cell stage to early blastocyst at E3.5) could increase the contribution of ESCs to the chimera. The results indicated that PSCs secrete protein Activin A to improve their EPI competency after injection into recipient embryos through influencing the development of mouse early embryos. This result is useful for optimizing the chimera production system and for a deep understanding of PSCs effects on early embryo development.
Activins
;
metabolism
;
Animals
;
Cells, Cultured
;
Embryonic Development
;
Germ Layers
;
metabolism
;
Mice
;
Pluripotent Stem Cells
;
cytology
;
metabolism
3.In vitro reconstitution of germ cell development.
Protein & Cell 2011;2(12):944-945
Animals
;
Cell Culture Techniques
;
Cell Differentiation
;
Cell Proliferation
;
Embryonic Stem Cells
;
cytology
;
metabolism
;
Germ Cells
;
cytology
;
metabolism
;
Germ Layers
;
cytology
;
metabolism
;
Humans
;
Induced Pluripotent Stem Cells
;
cytology
;
metabolism
;
Mice
;
Pluripotent Stem Cells
;
cytology
;
metabolism
;
Reproductive Techniques, Assisted