1.Crystalline nickel sulfide-induced genomic instability in transformed human broncho-epithelial cells.
Chuan-de CHEN ; Zhong-liang WU ; Jia-kun CHEN ; Wei-dong JI
Chinese Journal of Industrial Hygiene and Occupational Diseases 2004;22(1):57-59
OBJECTIVETo detect the genomic instability in the 16 human broncho-epithelial (16HBE) cells induced by crystalline nickel sulfide so as to provide the scientific basis for further study of nickel-induced cancer molecular mechanism.
METHODSTo analyse the genomic instability in transformed 16HBE cells induced by crystalline nickel sulfide by random amplified polymorphic DNA (RAPD).
RESULTSAll the 7 random primers selected could amplify 1 - 6 clear PCR bands. There were no significant differences between transformed 16HBE cells and negative control cells in the 4th, 5th, and 7th primers, but in the rest 4 primers there were significant differences, with special PCR bands for the same primer, indicating that genomic instability in transformed 16 HBE cells was induced by crystalline nickel sulfide.
CONCLUSIONCrystalline nickel sulfide could induce genomic instability in 16HBE cells.
Cell Line, Transformed ; Crystallization ; DNA ; drug effects ; genetics ; Epithelial Cells ; drug effects ; metabolism ; Genomic Instability ; drug effects ; Humans ; Nickel ; toxicity ; Random Amplified Polymorphic DNA Technique
2.Retrovirus-mediated transduction of a cytosine deaminase gene preserves the stemness of mesenchymal stem cells.
Jin Sung PARK ; Da Young CHANG ; Ji Hoi KIM ; Jin Hwa JUNG ; Joonseong PARK ; Se Hyuk KIM ; Young Don LEE ; Sung Soo KIM ; Haeyoung SUH-KIM
Experimental & Molecular Medicine 2013;45(2):e10-
Human mesenchymal stem cells (MSCs) have emerged as attractive cellular vehicles to deliver therapeutic genes for ex-vivo therapy of diverse diseases; this is, in part, because they have the capability to migrate into tumor or lesion sites. Previously, we showed that MSCs could be utilized to deliver a bacterial cytosine deaminase (CD) suicide gene to brain tumors. Here we assessed whether transduction with a retroviral vector encoding CD gene altered the stem cell property of MSCs. MSCs were transduced at passage 1 and cultivated up to passage 11. We found that proliferation and differentiation potentials, chromosomal stability and surface antigenicity of MSCs were not altered by retroviral transduction. The results indicate that retroviral vectors can be safely utilized for delivery of suicide genes to MSCs for ex-vivo therapy. We also found that a single retroviral transduction was sufficient for sustainable expression up to passage 10. The persistent expression of the transduced gene indicates that transduced MSCs provide a tractable and manageable approach for potential use in allogeneic transplantation.
Adolescent
;
Animals
;
Cell Death/drug effects
;
Cell Line, Tumor
;
Cell Proliferation/drug effects
;
Cell Transformation, Neoplastic/drug effects/pathology
;
Child
;
Cytosine Deaminase/*genetics/therapeutic use
;
Fluorouracil/pharmacology
;
Genetic Therapy
;
Genomic Instability/drug effects
;
Humans
;
Karyotype
;
Mesenchymal Stromal Cells/*cytology/drug effects/metabolism
;
Mice
;
Multipotent Stem Cells/cytology/drug effects/metabolism
;
Neoplasms/therapy
;
Retroviridae/*metabolism
;
Time Factors
;
*Transduction, Genetic
3.Search for Fanconi anemia/BRCA pathway defects in lymphoma cell lines.
Hui XIAO ; Kejian ZHANG ; Bing XIA
Chinese Journal of Medical Genetics 2008;25(5):506-510
OBJECTIVETo investigate the possible relationship between defects in the FA/BRCA pathway of genomic stability and potential pathogenesis of T and B cell lymphoma.
METHODSNineteen cell lines derived from diverse subtypes of lymphoma for possible FA pathway defects were screened.
RESULTSNo defect in FANCD2 ubiquitination was observed. However, the FANCN protein was absent in cell lines HT and Sudhl4. This absence was correlated with enhanced MMC-induced G2 arrest, growth inhibition and high chromosomal breakage rate in both cell lines. In addition, in exon-5a of FANCN gene, a mutation of c.1769 C>T, p. A590V was found in cell line HT, but not in cell line Sudhl4.
CONCLUSIONThis mutation may be the reason causing the absence of the FANCN protein expression or making the protein unstable and losing its function.
Animals ; Antibiotics, Antineoplastic ; pharmacology ; BRCA2 Protein ; metabolism ; Base Sequence ; Cell Cycle ; drug effects ; Cell Line, Tumor ; Cell Proliferation ; drug effects ; Chromosome Breakage ; drug effects ; Fanconi Anemia ; metabolism ; Fanconi Anemia Complementation Group D2 Protein ; metabolism ; Fanconi Anemia Complementation Group N Protein ; Gene Expression Regulation, Neoplastic ; Genomic Instability ; Humans ; Lymphoma ; genetics ; pathology ; Mitomycin ; pharmacology ; Molecular Sequence Data ; Mutation ; Nuclear Proteins ; chemistry ; deficiency ; genetics ; metabolism ; Protein Stability ; Sequence Analysis, DNA ; Signal Transduction ; Tumor Suppressor Proteins ; chemistry ; deficiency ; genetics ; metabolism
4.Sec13 induces genomic instability in U2OS cells.
Choong Ryoul SIHN ; Eun Jung SUH ; Kee Ho LEE ; Sang Hoon KIM
Experimental & Molecular Medicine 2005;37(3):255-260
Sec13p has been known as an endoplasmic reticulum-Golgi transport protein. Recently, it has also been shown to be required for the formation of septation in the fission yeast Schizosaccharomyces pombe. In the present study, we focused on the role of a human homolog of Saccharomyces cerevisiae SEC13, Sec13 protein during mitosis in U2OS cells. We found that the expression of Sec13 was constant throughout the cell cycle, and localized to the kinetochores at metaphase during mitosis. By using green fluorescent protein technology, we observed that Sec13 is required for evasion of mitotic arrest in response to spindle damage, leading to G1-like phase and apoptotic cell death. In addition, cells expressing exogenous Sec13 showed giant nuclei compared to endogenous ones in the absence of nocodazole. These results demonstrate that Sec13 is involved in the regulation of the metaphase/anaphase transition and may be functionally associated with mitotic machinery to maintain genomic stability during mitosis.
Anaphase
;
Antineoplastic Agents/pharmacology
;
Cell Line, Tumor/drug effects/metabolism/pathology
;
*G1 Phase
;
*Genomic Instability
;
Green Fluorescent Proteins/metabolism
;
Humans
;
Kinetochores/metabolism
;
Membrane Proteins/*genetics/metabolism
;
Metaphase
;
Mitosis/*physiology
;
*Mitotic Spindle Apparatus
;
Nocodazole/pharmacology
;
Osteosarcoma/genetics/metabolism/pathology
;
Research Support, Non-U.S. Gov't