1.Cucumber mosaic virus: Global genome comparison and beyond
Leonard Whye Kit Lim ; Ing Mee Hung ; Hung Hui Chung
Malaysian Journal of Microbiology 2022;18(1):79-92
Aims:
The cucumber mosaic virus (CMV) is categorized under the genus Cucumovirus and family Bromoviridae. This virus is known to infect over 1200 plant species from 100 families, including ornamental and horticultural plants. In this study, we pioneered a global genome comparison to decipher the unknown orchestrators behind the virulence and pathogenicity of CMV via the discovery of important single nucleotide polymorphic markers.
Methodology and results:
As a result, the genome size was found to be a potential preliminary country-specific marker for South Korea and the GC content can be utilized to preliminarily differentiate Turkey isolates from the others. The motif analysis as well as whole genome and coat protein phylogenetic trees were unable to form country-specific clusters. However, the coat protein haplotype analysis had successfully unconcealed country-specific single nucleotide polymorphic markers for Iran, Turkey and Japan isolates. Moreover, coat protein modelling and gene ontology prediction depicted high conservation across CMV isolates from different countries.
Conclusion, significance and impact of study
The country-specific single nucleotide polymorphic markers unearthed in this study may provide significant data towards the profiling of varying virulence and pathogenicity of CMV across the globe in time to combat the yield loss driven by this virus thru the most efficacious biological control measures in the future.
Cucumovirus--genetics
;
Genome, Microbial
2.Application of Whole Exome Sequencing to Identify Disease-Causing Variants in Inherited Human Diseases.
Genomics & Informatics 2012;10(4):214-219
The recent advent of next-generation sequencing technologies has dramatically changed the nature of biomedical research. Human genetics is no exception-it has never been easier to interrogate human patient genomes at the nucleotide level to identify disease-associated variants. To further facilitate the efficiency of this approach, whole exome sequencing (WES) was first developed in 2009. Over the past three years, multiple groups have demonstrated the power of WES through robust disease-associated variant discoveries across a diverse spectrum of human diseases. Here, we review the application of WES to different types of inherited human diseases and discuss analytical challenges and possible solutions, with the aim of providing a practical guide for the effective use of this technology.
Exome
;
Genetics, Medical
;
Genome
;
Humans
3.Genome-wide Association Studies for Osteoporosis: A 2013 Update.
Yong Jun LIU ; Lei ZHANG ; Christopher J PAPASIAN ; Hong Wen DENG
Journal of Bone Metabolism 2014;21(2):99-116
In the past few years, the bone field has witnessed great advances in genome-wide association studies (GWASs) of osteoporosis, with a number of promising genes identified. In particular, meta-analysis of GWASs, aimed at increasing the power of studies by combining the results from different study populations, have led to the identification of novel associations that would not otherwise have been identified in individual GWASs. Recently, the first whole genome sequencing study for osteoporosis and fractures was published, reporting a novel rare nonsense mutation. This review summarizes the important and representative findings published by December 2013. Comments are made on the notable findings and representative studies for their potential influence and implications on our present understanding of the genetics of osteoporosis. Potential limitations of GWASs and their meta-analyses are evaluated, with an emphasis on understanding the reasons for inconsistent results between different studies and clarification of misinterpretation of GWAS meta-analysis results. Implications and challenges of GWAS are also discussed, including the need for multi- and inter-disciplinary studies.
Codon, Nonsense
;
Genetics
;
Genome
;
Genome-Wide Association Study*
;
Osteoporosis*
5.Principles of Archaeogenetics and the Current Trends of Ancient Genome Studies.
Taeho KIM ; Eun Jin WOO ; Sunyoung PAK
Korean Journal of Physical Anthropology 2018;31(4):105-119
Archaeogenetics is an academic discipline that aims to establish scientific facts of human history by integrating ancient DNA analyses with archaeological and anthropological evidence. After ancient DNA research was initiated about 30 years ago, it has been innovated so rapidly that the range of analysis has been extended toward the whole genome sequence of ancient genomes in recent 10 years. By this development, researchers have been able to study in detail the origins and migration patterns of hominin species and ancient human populations by approaches of evolutionary genetics. This study has reviewed main principles of the archaeogenetic analysis and the current trends of ancient genome studies with recent achievements. While sampling techniques and statistical analyses have been improved, typical research methods have been established by the findings on hominins and ancient western Eurasia populations. Recently, archaeogenecists have been applying the methods to studying those in other geographical areas. Nonetheless, there is still the lack of ancient genome research about populations in Eastern Asia including the Korean peninsula. This review ultimately aims to predict possibilities and promise of future ancient genome studies of ancient Korean populations.
DNA
;
Far East
;
Genetics
;
Genome*
;
Hominidae
;
Humans
6.Utilizing tabacco genomic DNA to construct nearly random peptide libraries.
Su-Can MA ; Hai-Ming HUANG ; You-He GAO
Chinese Journal of Biotechnology 2005;21(2):332-335
We developed a novel method for constructing nearly random peptide library. Genomic DNAs extracted from tissue or cells of large genome species were digested with frequent cutter to produce short DNA fragments. These short fragments can be considered nearly random. Nearly random peptide libraries can be constructed by cloning the short fragments into appropriate expression vectors and transformation into host cells. Genomic DNA from one species can be digested with different restriction enzymes and ligated to different reading frames to produce several different libraries. In this study, we digested tobacco genomic DNA with two enzymes and cloned into three different reading frames to make totally six nearly random peptide libraries.
DNA, Plant
;
genetics
;
Genome, Plant
;
genetics
;
Peptide Library
;
Tobacco
;
genetics
7.Three-dimensional chromosome conformation capture and its derived technologies.
Hao TIAN ; Zijian YANG ; Xingwen XU ; Liangyu LIU
Chinese Journal of Biotechnology 2020;36(10):2040-2050
Linear chromatin is compacted into eukaryotic nucleus through a complex and multi-layered architecture. Consequently, chromatin conformation in a local or long-distance manner is strongly correlated with gene expression. Chromosome conformation capture (3C) technology, together with its variants like 4C/5C/Hi-C, has been well developed to study chromatin looping and whole genome structure. In this review, we introduce new technologies including chromosome capture combined with immunoprecipitation, nuclei acid-based hybridization, single cell and genome sequencing, as well as their application.
Cell Nucleus
;
Chromatin/genetics*
;
Chromosomes/genetics*
;
Genetic Techniques
;
Genome/genetics*
8.Characteristics of the chloroplast genome of Camellia insularis.
Jin ZHANG ; Yongbiao DENG ; Bo ZHAO
Chinese Journal of Biotechnology 2024;40(1):280-291
In this study, the chloroplast genome of Camellia insularis Orel & Curry was sequenced using high-throughput sequencing technology. The results showed that the chloroplast genome of C. insularis was 156 882 bp in length with a typical tetrad structure, encoding 132 genes, including 88 protein-coding genes, 36 tRNA genes, and 8 rRNA genes. Codon preference analysis revealed that the highest number of codons coded for leucine, with a high A/U preference in the third codon position. Additionally, 67 simple sequence repeats (SSR) loci were identified, with a preference for A and T bases. The inverted repeat (IR) boundary regions of the chloroplast genome of C. insularis were relatively conserved, except for a few variable regions. Phylogenetic analysis indicated that C. insularis was most closely related to C. fascicularis. Yellow camellia is a valuable material for genetic engineering breeding. This study provides fundamental genetic information on chloroplast engineering and offers valuable resources for conducting in-depth research on the evolution, species identification, and genomic breeding of yellow Camellia.
Genome, Chloroplast/genetics*
;
Phylogeny
;
Plant Breeding
;
Camellia/genetics*
;
Chloroplasts/genetics*
9.Chloroplast genomic characterization and phylogenetic analysis of Pellionia scabra.
Li YAN ; Xuelian YANG ; Yongfei WU ; Xia WANG ; Xiaojing HU
Chinese Journal of Biotechnology 2023;39(7):2914-2925
Pellionia scabra belongs to the genus Pellionia in the family of Urticaceae, and is a high-quality wild vegetables with high nutritional value. In this study, high-throughput techniques were used to sequence, assemble and annotate the chloroplast genome. We also analyzed its structure, and construct the phylogenetic trees from the P. scabra to further study the chloroplast genome characteristics. The results showed that the chloroplast genome size was 153 220 bp, and the GC content was 36.4%, which belonged to the typical tetrad structure in P. scabra. The chloroplast genome encodes 130 genes, including 85 protein-coding genes, 37 tRNA genes, and 8 rRNA genes in P. scabra. Among them, 15 genes contained 1 intron, 2 genes contained 2 introns, and rps12 had trans-splicing, respectively. In P. scabra, chloroplast genomes could be divided into four categories, including 43 photosynthesis, 64 self-replication, other 7 coding proteins, and 4 unknown functions. A total of 51 073 codons were detected in the chloroplast genome, among which the codon encoding leucine (Leu) accounted for the largest proportion, and the codon preferred to use A and U bases. There were 72 simple sequence repeats (SSRs) in the chloroplast genome of P. scabra, containing 58 single nucleotides, 12 dinucleotides, 1 trinucleotide, and 1 tetranucleotide. The ycf1 gene expansion was present at the IRb/SSC boundary. The phylogenetic trees showed that P. scabra (OL800583) was most closely related to Elatostema stewardii (MZ292972), Elatostema dissectum (MK227819) and Elatostema laevissimum var. laevissimum (MN189961). Taken together, our results provide worthwhile information for understanding the identification, genetic evolution, and genomics research of P. scabra species.
Phylogeny
;
Genome, Chloroplast/genetics*
;
Genomics
;
Chloroplasts/genetics*
;
Codon
;
Urticaceae/genetics*
10.Characteristics and phylogenetic analysis of chloroplast genome of a new type of fruit Rubus rosaefolius.
Yongfei WU ; Xuelian YANG ; Xia WANG ; Li YAN ; Wanping ZHANG
Chinese Journal of Biotechnology 2023;39(7):2939-2953
The genomic DNA of Rubus rosaefolius was extracted and sequenced by Illumina NovaSeq platform to obtain the complete chloroplast genome sequence, and the sequence characteristics and phylogenetic analysis of chloroplast genes were carried out. The results showed that the complete chloroplast genome of the R. rosaefolius was 155 650 bp in length and had a typical tetrad structure, including two reverse repeats (25 748 bp each), a large copy region (85 443 bp) and a small copy region (18 711 bp). A total of 131 genes were identified in the whole genome of R. rosaefolius chloroplast, including 86 protein coding genes, 37 tRNA genes and 8 rRNA genes. The GC content of the whole genome was 36.9%. The genome of R. rosaefolius chloroplast contains 47 scattered repeats and 72 simple sequence repeating (SSR) loci. The codon preference is leucine codon, and the codon at the end of A/U is preferred. Phylogenetic analysis showed that R. rosaefolius had the closest relationship with R. taiwanicola, followed by R. rubraangustifolius and R. glandulosopunctatus. The chloroplast genome characteristics and phylogenetic analysis of R. rosaefolius provide a theoretical basis for its genetic diversity research and chloroplast development and utilization.
Phylogeny
;
Rubus/genetics*
;
Genome, Chloroplast
;
Fruit/genetics*
;
Codon/genetics*