1.Functions and mechanisms of autophagy-related genes in plant responses to adversity stresses.
Yun'er REN ; Guoqiang WU ; Ming WEI
Chinese Journal of Biotechnology 2025;41(2):510-529
Autophagy is an evolutionarily conserved self-degradation process in eukaryotes. It not only plays a role in plant growth and development but also is involved in plant responses to biotic and abiotic stresses. Plants can initiate autophagy to degrade the surplus or damaged cytoplasmic materials and organelles, thus coping with abiotic and biotic stresses. The initiation of autophagy depends on autophagy-related genes (ATGs). The transcription factors can directly bind to the promoters of ATGs to activate autophagy and regulate their transcriptional levels and post-translational modifications. Furthermore, ATGs can directly or indirectly interact with plant hormones to regulate plant responses to stresses. When plants are exposed to salinity, drought, extreme temperatures, nutrient deficiencies, and pathogen stress, ATGs are significantly induced, which enhances the autophagy activity to facilitate the degradation of the denatured and misfolded proteins, thereby enhancing plant tolerance to adversity stresses. This article summarizes the discovery, structures, and classification of plant ATGs, reviews the research progress in the mechanisms of ATGs in plant responses to abiotic and biotic stresses, and prospects the future research directions. This review is expected to provide the genetic resources and a theoretical foundation for the genetic improvement of crops in responses to stress tolerance.
Autophagy/physiology*
;
Stress, Physiological/genetics*
;
Gene Expression Regulation, Plant
;
Plants/metabolism*
;
Transcription Factors/metabolism*
;
Plant Proteins/genetics*
;
Genes, Plant
;
Plant Physiological Phenomena
;
Droughts
2.Genome-wide identification, characterization, and expression analysis of MAPK genes in response to Plasmodiophora brassicae infection in Brassica juncea.
Chu XU ; Haiping WANG ; Jiangping SONG ; Xiaohui ZHANG ; Huixia JIA ; Jiaqi HAN ; Zhijie LI ; Sen LI ; Wenlong YANG
Chinese Journal of Biotechnology 2025;41(2):736-752
In recent years, the spread of clubroot disease caused by Plasmodiophora brassicae infection has seriously affected the yield and quality of Brassica juncea (L.) Czern.. The cascade of mitogen-activated protein kinases (MAPKs), a highly conserved signaling pathway, plays an important role in plant responses to both biotic and abiotic stress conditions. To mine the MAPK genes related to clubroot disease resistance in B. juncea, we conducted a genome-wide analysis on this vegetable, and we analyzed the phylogenetic evolution and gene structure of the MAPK gene family in mustard. The 66 BjuMAPK genes identified by screening the whole genome sequence of B. juncea were unevenly distributed on 17 chromosomes. At the genomic scale, tandem repeats led to an increase in the number of MAPK genes in B. juncea. It was found that members of the same subfamily had similar gene structures, and there were great differences among different subfamilies. These predicted cis-acting elements were related to plant hormones, stress resistance, and plant growth and development. The expression of BjuMAPK02, BjuMAPK15, BjuMAPK17, and BjuMAPK19 were down-regulated or up-regulated in response to P. brassicae infection. The above results lay a theoretical foundation for further studying the functions of BjuMAPK genes in B. juncea in response to the biotic stress caused by clubroot disease.
Mustard Plant/parasitology*
;
Plasmodiophorida/pathogenicity*
;
Plant Diseases/genetics*
;
Mitogen-Activated Protein Kinases/metabolism*
;
Phylogeny
;
Disease Resistance/genetics*
;
Gene Expression Regulation, Plant
;
Genome, Plant
;
Plant Proteins/genetics*
3.LBD gene family in Hippophae rhamnoides: identification and expression pattern during flower bud development.
Xinjuan LI ; Panpan YANG ; Tian ZHANG ; Qiandan REN ; Wu ZHOU
Chinese Journal of Biotechnology 2025;41(2):753-770
Lateral organ boundaries (LOB) domain (LBD) genes encode a family of transcription factors ubiquitous in higher plants, playing crucial roles in the growth, development, and stress responses. Hippophae rhamnoides, known for its drought, cold, and saline-alkali tolerance, offers significant economic benefits and ecological values. Utilizing the whole genome data and bioinformatics approaches, this study identified and analyzed the LBD gene family in H. rhamnoides. Additionally, we examined the expression pattern of HrLBD genes by integrating the transcriptome data from male and female flower buds in development. Eleven LBD genes were identified in H. rhamnoides, and these genes were distributed on five chromosomes. The HrLBD proteins showed the lengths ranging from 159 aa to 302 aa, the molecular weights between 18 249.91 Da and 33 202.01 Da, and the subcellular localization in the nucleus or chloroplasts. LBD protein domains and gene structures were highly conserved, featuring similar motifs. The phylogenetic analysis of HrLBD genes and the LBD genes in Arabidopsis thaliana and Hordeum vulgare revealed that HrLBD genes falled into two major categories: Class Ⅰ and Class Ⅱ. The transcriptome data and RT-qPCR showed that HrLBD genes were highly expressed in male flower buds, with up-regulated expression levels throughout bud development, indicating a role in the specific stage of male flower bud development. This study lays a theoretical foundation for exploring the roles of HrLBD genes in the growth, development, and sex differentiation of H. rhamnoides flower buds.
Flowers/genetics*
;
Hippophae/metabolism*
;
Phylogeny
;
Gene Expression Regulation, Plant
;
Plant Proteins/genetics*
;
Transcription Factors/genetics*
;
Multigene Family
;
Genes, Plant
4.Genome-wide identification and expression analysis of TCP gene family in Docynia delavayi (Franch.) Schneid.
Baoyue ZHANG ; Guoping LIU ; Jinhong TIAN ; Dawei WANG
Chinese Journal of Biotechnology 2025;41(2):809-824
Docynia delavayi (Franch.) Schneid. is an economic fruit plant with high medicinal and edible values. The TCP gene family plays a vital role in plant growth and development. To explore the function of the TCP gene family in the growth and development of D. delavayi. In this study, the TCP gene family (DdeTCP) members were identified from the D. delavayi genome and their expression levels at different stages of seed germination and fruit development were analyzed. The results showed that a total of 18 DdeTCP genes were identified from the D. delavayi genome, with uneven location on 11 chromosomes. The phylogenetic tree showed that the 18 DdeTCPs could be classified into class Ⅱ (3) and class Ⅱ (15), suggesting that functional differentiation occurred among the DdeTCP family members. DdeTCP11 highly homologous to AtTCP14 was highly expressed in the early stage of seed germination, which suggested that this gene played a key role in seed germination. In addition, DdeTCP16 in class Ⅱ had a high expression level during the fruit ripening stage, which indicated that it might be related to fruit ripening. The findings lay a foundation for probing into the roles of the DdeTCP gene family in the growth and development of D. delavayi.
Phylogeny
;
Gene Expression Regulation, Plant
;
Multigene Family
;
Genome, Plant/genetics*
;
Plant Proteins/genetics*
;
Transcription Factors/genetics*
;
Germination/genetics*
;
Fruit/growth & development*
;
Genes, Plant
5.Identification of rice htd1 allelic mutant and its regulatory role in grain size.
Yuqi YANG ; Zhining ZHANG ; Jun LIU ; Luyao TANG ; Yiting WEI ; Wen NONG ; Lu YIN ; Sanfeng LI ; Penggen DUAN ; Yuexing WANG ; Yuchun RAO
Chinese Journal of Biotechnology 2025;41(7):2789-2802
Rice is the world's largest food crop, and its yield and quality are directly related to food security and human health. Grain size, as one of the important factors determining the rice yield, has been widely concerned by breeders and researchers for a long time. To decipher the regulatory mechanism of rice grain size, we obtained a multi-tiller, dwarf, and small-grain mutant htd1 by ethyl methanesulfonate (EMS) mutation from the Japonica rice cultivar 'Zhonghua 11' ('ZH11'). Genetic analysis indicated that the phenotype of htd1 was controlled by a single recessive gene. Using the mutation site map (Mutmap) method, we identified the candidate gene OsHTD1, which encoded a carotenoid cleavage dioxygenase involved in the biosynthesis of strigolactone (SL). The SL content in htd1 was significantly lower than that in 'ZH11'. Cytological analysis showed that the grain size of the mutant decreased due to the reductions in the length and width of glume cells. The function of htd1 was further verified by the CRISPR/cas9 gene editing technology. The plants with the gene knockout exhibited similar grain size to the mutant. In addition, gene expression analysis showed that the expression levels of multiple grain size-related genes in the mutant changed significantly, suggesting that HTD1 may interact with other genes regulating grain size. This study provides a new theoretical basis for research on the regulatory mechanism of rice grain size and potential genetic resources for breeding the rice cultivars with high yields.
Oryza/growth & development*
;
Mutation
;
Edible Grain/growth & development*
;
Alleles
;
Plant Proteins/genetics*
;
Dioxygenases/genetics*
;
Lactones/metabolism*
;
Gene Expression Regulation, Plant
;
Genes, Plant
;
Gene Editing
;
CRISPR-Cas Systems
;
Phenotype
6.Map-based cloning and abiotic stress response analysis of rust spotted leaf 1 in rice.
Jun LIU ; Xiaoyan LIU ; Yiyun GE ; Yiting WEI ; Kangjie LING ; Luyao TANG ; Jiangmin XU ; Yuchun RAO
Chinese Journal of Biotechnology 2025;41(7):2871-2884
Rice (Oryza sativa L.) is an important food crop. The appearance of lesion mimics in rice leads to phytohormone disorders, which affects rice adaptation to environmental stresses and ultimately reduces the yield and quality. To explore whether the changes in the adaptability of rice lesion-mimic mutants to stressful environments are caused by the disorder of phytohormone metabolism in plants. In this study, we screened an ethyl methane sulfonate-treated population of the japonica cultivar 'Taipei 309' for a mutant with rust-like spots on leaves at the early tillering stage and brown-red spots at maturity and named it rsl1 (rust spotted leaf 1). Compared with the wild type, rsl1 showed decreases in plant height, panicle length, primary branch number, secondary branch number, filled grains per panicle, seed-setting rate, and 1 000-grain weight, and an increase in number of effective panicles. Genetic analysis indicated that rsl1 was controlled by a single recessive nuclear gene. RSL1 was localized between two molecular markers, B7-7 and B7-9, on rice chromosome 7 by map-based cloning. PCR sequencing of the annotated genes in this interval revealed a mutation of C1683A on the eighth exon of SPL5 (LOC_Os07g10390) in rsl1, which resulted in premature termination of protein translation. Exogenous phytohormone treatments showed that rsl1 was less sensitive to salicylic acid (SA), abscisic acid (ABA), and indo-3-acetic acid (IAA) and more sensitive to methyl jasmonate (MeJA) and gibberellin acid (GA) than the wild type. In addition, the survival rate of rsl1 was lower than that of the wild type under salt, alkali, drought, and high temperature stresses, and it was higher than that of the wild type under cold stress. Quantitative real-time polymerase chain reaction (qRT-PCR) results showed that RSL1 was involved in the regulation of ABA, SA, MeJA, IAA, and GA-related genes under abiotic stresses. The present study showed that the RSL1 mutation led to the appearance of lesion mimics and affected the growth, development, and stress resistance of rsl1 under abiotic stresses. The study of the functional mechanism of this gene can provide theoretical guidance for the research on rice stress resistance.
Oryza/microbiology*
;
Stress, Physiological/genetics*
;
Plant Diseases/genetics*
;
Cloning, Molecular
;
Chromosome Mapping
;
Plant Growth Regulators/metabolism*
;
Plant Proteins/genetics*
;
Mutation
;
Cyclopentanes
;
Genes, Plant
;
Plant Leaves/genetics*
;
Oxylipins
7.Identification of PLATZ gene family in Camellia sinensis and expression analysis of this gene family under high temperature and drought stresses.
Xiaoshu YI ; Anru ZHENG ; Chengzhe ZHOU ; Caiyun TIAN ; Cheng ZHANG ; Yuqiong GUO ; Xuan CHEN
Chinese Journal of Biotechnology 2025;41(7):2897-2912
The plant AT-rich sequence and zinc-binding protein (PLATZ) family is composed of plant-specific zinc finger-like transcription factors, which play important roles in plant growth, development, and stress tolerance. In this study, to gain a better understanding of the PLATZ gene in C. sinensis and elucidate its response under drought and high temperature conditions, the PLATZ gene family of the C. sinensis cultivar 'Tieguanyin' was systematically identified, and a total of 12 CsPLATZ family members were identified. Expasy online and other bioinformatics tools were used to analyze the members of the PLATZ gene family in terms of protein physicochemical properties, phylogenetic relationships, cis-acting elements, gene structures, and intra- and inter-species collinearity. The results of phylogenetic analysis classified the CsPLATZ family members into 2 subfamilies. The conserved domains and gene structures of PLATZ family members within the same subfamily had a high degree of consistency, whereas a certain degree of diversity was observed among the subfamilies. Twelve PLATZ genes were unevenly distributed across 7 chromosomes of C. sinensis and the promoter regions of these genes had multiple cis-acting elements related to hormone and stress responses. The collinearity analysis showed that there were 4 pairs of duplication events in the CsPLATZ gene family, all of which were segmental duplications. Based on this gene family, C. sinensis had a closer evolutionary relationship with A. thaliana than with O. sativa. The transcriptome analysis showed that the expression levels of CsPLATZ family members varied in different tissue samples of C. sinensis. 6 genes (CsPLATZ-1, CsPLATZ-2, CsPLATZ-3, CsPLATZ-4, CsPLATZ-6, and CsPLATZ-8) with high expression in shoots, young leaves, and roots were selected for high temperature and drought stress treatments, and their expression was quantified by qRT-PCR. The results indicated that the six genes might play important roles in the response to drought stress. In addition, CsPLATZ-2 and CsPLATZ-8 might have important functions in the response to high temperature stress. The results of this study will contribute to a better understanding of the biological functions of PLATZ genes and their possible roles in the growth, development, and stress responses of C. sinensis.
Droughts
;
Camellia sinensis/physiology*
;
Phylogeny
;
Gene Expression Regulation, Plant
;
Plant Proteins/genetics*
;
Stress, Physiological/genetics*
;
Multigene Family
;
Transcription Factors/genetics*
;
Hot Temperature
;
Genes, Plant
8.Advances in the application of genome editing technologies in plant pathogenic fungi.
Chinese Journal of Biotechnology 2025;41(10):3683-3700
Filamentous fungi represent an important group of eukaryotic microorganisms with diverse ecological functions and ubiquitous distribution in various ecosystems. Among them, many species are closely associated with agriculture, functioning as major plant pathogens that cause yield losses and produce mycotoxins to compromise both the quality and safety of agricultural products. In recent years, the CRISPR/Cas system has emerged as a powerful and programmable genome editing tool, and it has been extensively applied to the genetic study of plant pathogenic fungi. This technology has greatly facilitated the investigation of pathogenic mechanisms, mycotoxin biosynthetic pathways and key gene functions, antifungal resistance, and rapid pathogen detection. This review summarizes the development of CRISPR/Cas systems and the key strategies for their application in plant pathogenic fungi and makes an outlook on the practical deployment. With the continuous advancement of gene editing technologies, emerging fungal-adapted editing systems hold great promise for advancing functional genomics and enabling innovations in disease-resistant breeding and sustainable crop protection.
Gene Editing/methods*
;
Fungi/pathogenicity*
;
CRISPR-Cas Systems/genetics*
;
Plant Diseases/microbiology*
;
Plants/microbiology*
;
Genome, Fungal/genetics*
9.Genome-wide association analysis of agronomic traits related to eggplant fruits: a review.
Cheng LI ; Ting YANG ; Binxian ZHUANG ; Yongxian WEN
Chinese Journal of Biotechnology 2024;40(1):94-103
Eggplant is an important horticultural crop and one of the most widely grown vegetables in the Solanaceae family. Eggplant fruit-related agronomic traits are complex quantitative traits with low efficiency and long cycle time for traditional breeding selection. With the rapid development of high-throughput sequencing technology and bioinformatics tools, genome-wide association study (GWAS) has shown great application potential in analyzing the genetic rules of complex agronomic traits related to eggplant fruits. This paper first reviews the progress of genome-wide association analysis in eggplant fruit shape, fruit color and other fruit-related agronomic traits. Subsequently, aiming at the problem of missing heritability, which is common in the genetic studies of eggplant quantitative traits, this paper puts forward the development strategies of eggplant GWAS in the future based on the hot spots of application of four GWAS strategies in the research of agronomics traits related to eggplant fruits. Lastly, the application of GWAS strategy in the field of eggplant molecular breeding is expected to provide a theoretical basis and reference for the future use of GWAS to analyze the genetic basis of various eggplant fruit-related traits and to select fruit materials that meet consumer needs.
Solanum melongena/genetics*
;
Fruit/genetics*
;
Genome-Wide Association Study
;
Plant Breeding
;
Agriculture
;
Vegetables
10.Characteristics of the chloroplast genome of Camellia insularis.
Jin ZHANG ; Yongbiao DENG ; Bo ZHAO
Chinese Journal of Biotechnology 2024;40(1):280-291
In this study, the chloroplast genome of Camellia insularis Orel & Curry was sequenced using high-throughput sequencing technology. The results showed that the chloroplast genome of C. insularis was 156 882 bp in length with a typical tetrad structure, encoding 132 genes, including 88 protein-coding genes, 36 tRNA genes, and 8 rRNA genes. Codon preference analysis revealed that the highest number of codons coded for leucine, with a high A/U preference in the third codon position. Additionally, 67 simple sequence repeats (SSR) loci were identified, with a preference for A and T bases. The inverted repeat (IR) boundary regions of the chloroplast genome of C. insularis were relatively conserved, except for a few variable regions. Phylogenetic analysis indicated that C. insularis was most closely related to C. fascicularis. Yellow camellia is a valuable material for genetic engineering breeding. This study provides fundamental genetic information on chloroplast engineering and offers valuable resources for conducting in-depth research on the evolution, species identification, and genomic breeding of yellow Camellia.
Genome, Chloroplast/genetics*
;
Phylogeny
;
Plant Breeding
;
Camellia/genetics*
;
Chloroplasts/genetics*

Result Analysis
Print
Save
E-mail