1.Molecular guidance cues in the development of visual pathway.
Yupu DIAO ; Yuqing CHEN ; Peijun ZHANG ; Liyuan CUI ; Jiayi ZHANG
Protein & Cell 2018;9(11):909-929
70%-80% of our sensory input comes from vision. Light hit the retina at the back of our eyes and the visual information is relayed into the dorsal lateral geniculate nuclei (dLGN) and primary visual cortex (V1) thereafter, constituting the image-forming visual circuit. Molecular cues are one of the key factors to guide the wiring and refinement of the image-forming visual circuit during pre- and post-embryonic stages. Distinct molecular cues are involved in different developmental stages and nucleus, suggesting diverse guidance mechanisms. In this review, we summarize molecular guidance cues throughout the image-forming visual circuit, including chiasm determination, eye-specific segregation and refinement in the dLGN, and at last the reciprocal connections between the dLGN and V1.
Animals
;
Geniculate Bodies
;
metabolism
;
Humans
;
Visual Cortex
;
metabolism
;
Visual Pathways
;
metabolism
2.c-Fos Immunoreactivity in the Neurons of the Lateral Geniculate Nucleus in Albino Rats by Light Exposure after Dark Rearing.
Yong Jae CHA ; Ji Hye LEE ; Tai Kyoung BAIK ; Jong Seok PARK
Korean Journal of Ophthalmology 2011;25(6):434-439
PURPOSE: To investigate the effect of dark rearing immediately after birth on the maturation of the visual relay neurons in the lateral geniculate nucleus. METHODS: Fifty neonatal rats were used. Neonates of the control groups were raised under a normal light/dark cycle. Neonates of the experiment groups were dark reared and isolated from light during the entire experimental period, then exposed to the sun light for 1 hour before sacrifice. RESULTS: In the control groups, the neurons in the dorsal lateral geniculate nucleus developed normally at each age tested. In the experiment groups, the cytoplasm of the large neurons in the dorsal lateral geniculate nucleus of 2-week-old rats contained small vesicles, and the cytoplasm of the large neurons of 4-week-old rats was converted into a vacuole-like space. Moreover, c-Fos immunoreactivity of the large neurons in the dorsal lateral geniculate nucleus in the experiment groups was significantly increased compared to that of the control groups. CONCLUSIONS: We suppose that the maturation of the neurons in the lateral geniculate nucleus might be influenced by light stimulation during the critical period. Furthermore, c-Fos could be a marker of the functional activity of the visual relay neurons of the lateral geniculate nucleus in albino rats.
Animals
;
Animals, Newborn
;
Critical Period (Psychology)
;
*Dark Adaptation
;
Geniculate Bodies/*metabolism
;
Immunohistochemistry
;
*Light
;
Neurons/*metabolism
;
Proto-Oncogene Proteins c-fos/*metabolism
;
Rats
;
Rats, Sprague-Dawley
3.Dendritic Cell Factor 1-Knockout Results in Visual Deficit Through the GABA System in Mouse Primary Visual Cortex.
Jieyun SHI ; Qian LI ; Tieqiao WEN
Neuroscience Bulletin 2018;34(3):465-475
The visual system plays an important role in our daily life. In this study, we found that loss of dendritic cell factor 1 (DCF1) in the primary visual cortex (V1) caused a sight deficit in mice and induced an abnormal increase in glutamic acid decarboxylase 67, an enzyme that catalyzes the decarboxylation of glutamate to gamma aminobutyric acid and CO, particularly in layer 5. In vivo electrophysiological recordings confirmed a decrease in delta, theta, and beta oscillation power in DCF1-knockout mice. This study presents a previously unknown function of DCF1 in V1, suggests an unknown contact between DCF1 and GABA systems, and provides insight into the mechanism and treatment of visual deficits.
Animals
;
Brain Waves
;
genetics
;
Disease Models, Animal
;
Electroencephalography
;
Gene Expression Regulation
;
drug effects
;
genetics
;
Geniculate Bodies
;
drug effects
;
metabolism
;
Ginkgolides
;
therapeutic use
;
Glutamate Decarboxylase
;
metabolism
;
Lactones
;
therapeutic use
;
Membrane Proteins
;
deficiency
;
genetics
;
Mice
;
Mice, Inbred C57BL
;
Mice, Knockout
;
Nerve Tissue Proteins
;
deficiency
;
genetics
;
Photic Stimulation
;
Proto-Oncogene Proteins c-fos
;
metabolism
;
Vision Disorders
;
drug therapy
;
genetics
;
pathology
;
physiopathology
;
Visual Cortex
;
metabolism
;
pathology
;
gamma-Aminobutyric Acid
;
metabolism