1.Differential transcription of mating-type genes during sexual reproduction of natural Cordyceps sinensis.
Xiu-Zhang LI ; Yu-Ling LI ; Jia-Shi ZHU
China Journal of Chinese Materia Medica 2023;48(10):2829-2840
Natural Cordyceps sinensis as an insect-fungal complex, which is developed after Ophiocordyceps sinensis infects a larva of Hepialidae family. Seventeen genotypes of O. sinensis have been identified in natural C. sinensis. This paper summarized the literature reports and GenBank database regarding occurrence and transcription of the mating-type genes of MAT1-1 and MAT1-2 idiomorphs in natural C. sinensis, in Hirsutella sinensis(GC-biased Genotype #1 of O. sinensis), to infer the mating pattern of O. sinensis in the lifecycle of natural C. sinensis. The mating-type genes and transcripts of MAT1-1 and MAT1-2 idiomorphs were identified in the metagenomes and metatranscriptomes of natural C. sinensis. However, their fungal sources are unclear because of co-colonization of several genotypes of O. sinensis and multiple fungal species in natural C. sinensis. The mating-type genes of MAT1-1 and MAT1-2 idiomorphs were differentially present in 237 H. sinensis strains, constituting the genetic control of the O. sinensis reproduction. Transcriptional control of the O. sinensis reproduction includes: differential transcription or silencing of the mating-type genes of MAT1-1 and MAT1-2 idiomorphs, and the MAT1-2-1 transcript with unspliced intron I that contains 3 stop codons. Research on the H. sinensis transcriptome demonstrated differential and complementary transcriptions of the mating-type genes of MAT1-1 and MAT1-2 idiomorphs in Strains L0106 and 1229, which may become mating partners to accomplish physiological heterothallism. The differential occurrence and transcription of the mating-type genes in H. sinensis are inconsistent with the self-fertilization hypothesis under homothallism or pseudohomothallism, but instead indicate the need of mating partners of the same H. sinensis species, either monoecious or dioecious, for physiological heterothallism, or heterospecific species for hybridization. Multiple GC-and AT-biased genotypes of O. sinensis were identified in the stroma, stromal fertile portion(densely covered with numerous ascocarps) and ascospores of natural C. sinensis. It needs to be further explored if the genome-independent O. sinensis genotypes could become mating partners to accomplish sexual reproduction. S. hepiali Strain FENG experienced differential transcription of the mating-type genes with a pattern complementary to that of H. sinensis Strain L0106. Additional evidence is needed to explore a hybridization possibility between S. hepiali and H. sinensis, whether they are able to break the interspecific reproductive isolation. Genotypes #13~14 of O. sinensis feature large DNA segment reciprocal substitutions and genetic material recombination between 2 heterospecific parental fungi, H. sinensis and an AB067719-type fungus, indicating a possibility of hybridization or parasexuality. Our analysis provides important information at the genetic and transcriptional levels regarding the mating-type gene expression and reproduction physiology of O. sinensis in the sexual life of natural C. sinensis and offers crucial reproductive physiology evidence, to assist in the design of the artificial cultivation of C. sinensis to supplement the increasing scarcity of natural resource.
Cordyceps/genetics*
;
Genes, Mating Type, Fungal/genetics*
;
Reproduction/genetics*
2.A potential mating-type biomarker to detect pathogenic Ganoderma species
Doris Lau ; Lee Weng Wah ; Chong Mei Ling ; Tee Sue Sean ; Jonathan Guyang Ling ; Anis Farhan Fatimi Ab Wahab ; Farah Diba Abu Bakar
Malaysian Journal of Microbiology 2022;18(3):331-337
Aims:
The basal stem rot disease in oil palm is caused by the pathogenic Ganoderma boninense, which is infectious after mating and forming dikaryotic hyphae. This study was aimed to generate a mating-type biomarker for the detection of pathogenic Ganoderma species.
Methodology and results:
Mating-type region of Ganoderma was amplified using polymerase chain reaction (PCR) and primers flanking the mating-type region of other basidiomycetes. Amplified fragments were sequenced and were identified as the Ganoderma pheromone receptor gene of matB locus called the gprb2 gene. Using this biomarker, the pheromone receptor gene was detected in a total of 107 pathogenic Ganoderma spp. while the gene was not detected in the non-pathogenic Ganoderma lucidum. Phylogenetic tree analyses of the gene fragment encoding the partial amino acid sequence of gprb2 showed clades of close evolutionary relationship among the 107 pathogenic Ganoderma spp. Phylogenetic analyses using deduced amino acid sequences of the Ganoderma pheromone receptor b2 gene, gprb2 with homologous pheromone receptors of other basidiomycetous fungi revealed high conservation of this pheromone receptor within their respective taxonomy.
Conclusion, significance and impact of study
A potential mating-type biomarker was successfully identified that could detect pathogenic Ganoderma spp. The research findings will be helpful in oil palm screening to detect pathogenic Ganoderma spp. and gain further insight into the role of the mating-type loci of Ganoderma towards its pathogenesis in causing the basal stem rot disease of oil palm.
Genes, Mating Type, Fungal
;
Ganoderma
3.A landscape of transcriptome analysis of three sclerotia growth stages in Polyporus umbellatus.
Xiao-Yu BIAN ; Tian-Lin PEI ; Zong-Suo LIANG ; Zhao-Yang CHANG
China Journal of Chinese Materia Medica 2019;44(17):3718-3723
Polyporus umbellatus,a traditional Chinese precious medicine as long been used for eliminating dampness,diuresis and have effect on cancer,getting more and more popularly in China recently. And the developmental metabolic process of the medicinal fungus,P. umbellatus,has been gotten more attention. This study is for the first time to explore the three sclerotial growth stages in P. umbellatus,named " white Polyporus"( initial phase), " grey Polyporus"( developmental phase) and " black Polyporus"( mature phase),by utilizing the de novo transcriptome assembly analysis technology. Finally,we obtained 88. 12 Gb sequence containing85 235 unigenes( ≥200 bp) assembled and 100% were annotated. We identified genes differentially expressed among the three stages of the sclerotia and screened out MFSgst,ERG4/ERG24,WD40,Rho A,CYP450,PKS,GSase and CHS1,which may contribute to the production of medicinal secondary metabolites and the defense mechanism against the environmental stress and biological invasion. We did the qRT-PCR trial to verify our results,which is in line with expectations. Our results are purposed to unearth the molecular mechanism of the accumulation of active constituents in different stages of Polyporus sclerotia which can be applied in the production and protection of Polyporus effectively.
China
;
Gene Expression Profiling
;
Genes, Fungal
;
Medicine, Chinese Traditional
;
Polyporus
;
genetics
;
growth & development
;
Transcriptome
4.ERG3 and ERG11 genes are critical for the pathogenesis of Candida albicans during the oral mucosal infection.
Yujie ZHOU ; Min LIAO ; Chengguang ZHU ; Yao HU ; Ting TONG ; Xian PENG ; Mingyun LI ; Mingye FENG ; Lei CHENG ; Biao REN ; Xuedong ZHOU
International Journal of Oral Science 2018;10(2):9-9
The hyphal development of Candida albicans (C. albicans) has been considered as an essential virulent factor for host cell damage. However, the missing link between hyphae and virulence of C. albicans is also been discovered. Here, we identified that the null mutants of ERG3 and ERG11, two key genes in ergosterol biosynthesis pathway, can form typical hyphae but failed to cause the oral mucosal infection in vitro and in vivo for the first time. In particular, the erg3Δ/Δ and erg11Δ/Δ strains co-cultured with epithelial cells significantly reduced the adhesion, damage, and cytokine (interleukin-1α (IL-1α)) production, whereas the invasion was not affected in vitro. Importantly, they were incapable of extensive hyphal invasion, formation of micro-abscesses, and tongue epithelium damage compared to wild type due to the decrease of the colonization and epithelial infection area in a murine oropharyngeal candidiasis model. The fluconazole (FLC), an antifungal targeted at ergosterol biosynthesis, relieved the epithelial infection of C. albicansin vitro and in vivo even under non-growth inhibitory dosage confirming the virulent contribution of ergosterol biosynthesis pathway. The erg3Δ/Δ and erg11Δ/Δ strains were cleared by macrophages similar to wild type, whereas their virulence factors including agglutinin-like sequence 1 (Als1), secreted aspartyl proteinase 6 (Sap6), and hyphal wall protein-1 (Hwp1) were significantly reduced indicated that the non-toxicity might not result from the change on immune tolerance but the defective virulence. The incapacity of erg3Δ/Δ and erg11Δ/Δ in epithelial infection highlights the contribution of ergosterol biosynthesis pathway to C. albicans pathogenesis and fluconazole can not only eliminate the fungal pathogens but also reduced their virulence even at low dosage.
Animals
;
Antifungal Agents
;
pharmacology
;
Candida albicans
;
drug effects
;
genetics
;
pathogenicity
;
Candidiasis, Oral
;
drug therapy
;
genetics
;
microbiology
;
Fluconazole
;
pharmacology
;
Genes, Fungal
;
genetics
;
Mice
;
Microscopy, Electron, Scanning
;
Potassium Channels
;
genetics
;
Virulence
5.A Novel Rapid Fungal Promoter Analysis System Using the Phosphopantetheinyl Transferase Gene, npgA, in Aspergillus nidulans.
Ha Yeon SONG ; Dahye CHOI ; Dong Min HAN ; Dae Hyuk KIM ; Jung Mi KIM
Mycobiology 2018;46(4):429-439
To develop a convenient promoter analysis system for fungi, a null-pigment mutant (NPG) of Aspergillus nidulans was used with the 4′-phosphopantetheinyl transferase (PPTase) gene, npgA, which restores the normal pigmentation in A. nidulans, as a new reporter gene. The functional organization of serially deleted promoter regions of the A. nidulans trpC gene and the Cryphonectria parasitica crp gene in filamentous fungi was representatively investigated to establish a novel fungal promoter assay system that depends on color complementation of the NPG mutant with the PPTase npgA gene. Several promoter regions of the trpC and crp genes were fused to the npgA gene containing the 1,034-bp open reading frame and the 966-bp 3’ downstream region from the TAA, and the constructed fusions were introduced into the NPG mutant in A. nidulans to evaluate color recovery due to the transcriptional activity of the sequence elements. Serial deletion of the trpC and crp promoter regions in this PPTase reporter assay system reaffirmed results in previous reports by using the fungal transformation step without a laborious verification process. This approach suggests a more rapid and convenient system than conventional analyses for fungal gene expression studies.
Aspergillus nidulans*
;
Aspergillus*
;
Complement System Proteins
;
Fungi
;
Genes, Fungal
;
Genes, Reporter
;
Open Reading Frames
;
Pigmentation
;
Promoter Regions, Genetic
;
Transferases*
6.Discovery of differential sequences for improving breeding and yield of cultivated Ophiocordyceps sinensis through ITS sequencing and phylogenetic analysis.
Qi-Qing CHENG ; Chun-Song CHENG ; Yue OUYANG ; Chi-Chou LAO ; Hao CUI ; Yu XIAN ; Zhi-Hong JIANG ; Wen-Jia LI ; Hua ZHOU
Chinese Journal of Natural Medicines (English Ed.) 2018;16(10):749-755
To accelerate the breeding process of cultivated Ophiocordyceps sinensis and increase its yield, it is important to identify molecular fingerprint of dominant O. sinensis. In the present study, we collected 3 batches of industrially cultivated O. sinensis product with higher yield than the others and compared their internal transcribed spacer (ITS) sequences with the wild and the reported. The ITS sequence was obtained by bidirectional sequencing and analyzed with molecular systematics as a DNA barcode for rapid and accurate identification of wild and cultivated O. sinensis collected. The ITS sequences of O. sinensis with detailed collection loci on NCBI were downloaded to construct a phylogenetic tree together with the sequences obtained from the present study by using neighbor-joining method based on their evolution relationship. The information on collection loci was analyzed with ArcGIS 10.2 to demonstrate the geographic distribution of these samples and thus to determine the origin of the dominant samples. The results showed that all wild and cultivated samples were identified as O. sinensis and all sequences were divided into seven phylogenetic groups in the tree. Those groups were precisely distributed on the map and the process of their system evolution was clearly presented. The three cultivated samples were clustered into two dominant groups, showing the correlation between the industrially cultivated samples and the dominant wild samples, which can provide references for its optimized breeding in the future.
Breeding
;
DNA, Fungal
;
genetics
;
DNA, Intergenic
;
genetics
;
Genes, Mating Type, Fungal
;
Hypocreales
;
chemistry
;
classification
;
genetics
;
growth & development
;
Phylogeny
7.Physical interactions and mutational analysis of MoYpt7 in Magnaporthe oryzae.
Lu-Yao HUANG ; Min WU ; Xiao-Yun YU ; Lin LI ; Fu-Cheng LIN ; Xiao-Hong LIU
Journal of Zhejiang University. Science. B 2018;19(1):79-84
In this study, we analyzed the physical interactions of the dominant negative isoform of MoYpt7. Our results show that MoYpt7 interacts with MoGdi1. The dominant negative isoform of MoYpt7 (dominant negative isoform, N125I) is essential for colony morphology, conidiation, and pathogenicity in the rice blast fungus. These results further demonstrate the biological functions of MoYpt7 in Magnaporthe oryzae.
DNA Mutational Analysis
;
Fungal Proteins/metabolism*
;
Gene Expression Regulation, Fungal
;
Genes, Fungal
;
Green Fluorescent Proteins/metabolism*
;
Magnaporthe/genetics*
;
Microscopy, Fluorescence
;
Mutation
;
Oryza/microbiology*
;
Phenotype
;
Plant Diseases/microbiology*
;
Protein Isoforms
8.Effect of integration loci of genome on heterologous gene expression in Saccharomyces cerevisiae.
Wenzheng ZHANG ; Jijun TANG ; Bingzhi LI ; Yingjin YUAN
Chinese Journal of Biotechnology 2016;32(7):901-911
Chromosomal integration of heterologous genes or pathways is preferred over the use of episomal plasmids for its inherently stability and thus more desirable in the industrial setting. However, the position of integration of heterologous genes in the genome influences the expression levels. In combination of high throughput transformation of the Yeast Knock-out Collection (YKO) and FACS analysis, the position effect on heterologous reporter gene gfp was identified across the whole genome in yeast. In total 428 high-expressed sites and 444 low-expressed sites were spotted, providing massive data to analyze patterns and reasons for region dependency of gene expression on the genome-wide scale.
Gene Expression Regulation, Fungal
;
Gene Knock-In Techniques
;
Genes, Reporter
;
Genome, Fungal
;
Saccharomyces cerevisiae
;
genetics
9.Mating Type Analysis of Dermatophytes using Mating Type Gene.
Jong Soo CHOI ; Byeong Su KIM ; Yeon Woong KIM ; Jin Hwa CHOI ; Dong Hoon SHIN
Korean Journal of Medical Mycology 2015;20(3):53-62
BACKGROUND: Traditionally, mating types of dermatophytes had been identified by mating experiments. It took a long time and there were many limitations. Recently, we can figure out the fungal mating types using molecular mating type analysis by detecting mating type (MAT) genes. The mating type (+) specific gene of the high-mobility-group (HMG) DNA binding domain and the mating type (-) specific gene of alpha-box were found in Arthroderma simii and A. vanbreuseghemii. OBJECTIVE: We applied this molecular mating type analysis to strains of Trichophyton interdigitale, T. rubrum, Microsporum canis in Korea and compared these results with previous reports. METHODS: Thirty-four strains of T. interdigitale (12 granular types, 9 powdery types, 8 purple-red types, 5 cottony types), 5 strains of T. rubrum, and 5 strains of M. canis were examined. We analyzed ribosomal RNA internal transcribed space 1, 4 sequencing of T. interdigitale subtypes and investigated the mating type of dermatophytes using alpha-box gene and HMG gene primers. RESULTS: Among 12 strains of granular type of T. interdigitale, 9 strains were type (-) and other 3 strains were type (+). All of them were zoophilic. All strains of powdery, purple-red and cottony types of T. interdigitale were type (+) and anthropophilic. In T. rubrum and M. canis, all strains were type (-). These results were matched with previously reported studies. CONCLUSION: The molecular mating type analysis of dermatophytes was quicker method than conventional mating experiments. Moreover, MAT genes are highly conserved even in apparently asexual fungi. The results were well matched with previous reports with traditional mating tests.
Arthrodermataceae*
;
DNA
;
Fungi
;
Genes, Mating Type, Fungal
;
Korea
;
Microsporum
;
RNA, Ribosomal
;
Trichophyton
10.Effect of andrographolide on quorum sensing and relevant virulence genes of Candida albicans.
Yuan-yuan YAN ; Gao-xiang SHI ; Jing SHAO ; Ke-qiao LU ; Meng-xiang ZHANG ; Tian-ming WANG ; Bin WANG ; Chang-zhong WANG
China Journal of Chinese Materia Medica 2015;40(2):292-297
OBJECTIVETo investigate the effect of andrographolide (AG) on quroum sensing (QS) and relevant virulence genes of Candida albicans.
METHODGas-chromatography-mass spectrometry (GC-MS) was applied to detect the changes in the content of farnesol and tyrosol in C. albicans intervened by AG. The real-time quantitative PCR (qRT-PCR) was adopted to inspect the expressions of relevant virulence genes such as CHK1, PBS2 and HOG1 regulated by QS.
RESULTAt 2 h after the growth of C. albican, the farnesol and tyrosol secretions reduced, without notable change after intervention with AG. The secretions were highest at 12 h and decreased at 24 h. After the intervention with different concentrations of AG, the farnesol content reduces, whereas tyrosol increased, indicating a dose-dependence, particularly with 1 000 mg x L(-1) AG. qRT-PCR revealed that 1 000 mg x L(-1) AG could down-regulate CHK1 by 2.375, 3.330 and 4.043 times and PBS2 by 2.010, 4.210 and 4.760 times, with no significant change in HOG1.
CONCLUSIONAG could inhibit the farnesol secretion, promote the tyrosol secretion and down-regulate QS-related virulence genes CHK1 and PBS2 expressions.
Candida albicans ; drug effects ; genetics ; physiology ; Diterpenes ; pharmacology ; Farnesol ; analysis ; metabolism ; Gas Chromatography-Mass Spectrometry ; Genes, Fungal ; Phenylethyl Alcohol ; analogs & derivatives ; analysis ; metabolism ; Quorum Sensing ; drug effects ; Real-Time Polymerase Chain Reaction ; Virulence ; genetics


Result Analysis
Print
Save
E-mail