1.Influence of light on gene expression of key synthesis enzyme genes FtANR and FtLAR about proanthocyanidin in seeds of homologous plant of food and medicine Fagopyrum tataricum.
Chun-Li JIANG ; Xin-Yao SU ; Ya-Chun XU ; Er-Yi WU ; Yu-Hua SHI ; Dong ZHANG ; Qing-Fu CHEN ; Wei SUN ; Jian-Ping XUE
China Journal of Chinese Materia Medica 2018;43(3):469-477
Tartary buckwheat Fagopyrum tataricum is an important medicinal and functional herb due to its rich content of flavonoids in the seeds. F.tataricum exhibited good functions for free radicals scavenging, anti-oxidation, anti-aging activities. Although much genetic knowledge of the synthesis, regulation, accumulation of rutin, the genetic basis of proanthocyanidins(PAs) in tartary buckwheat and their related gene expression changes under different lights(blue, red, far red, ultraviolet light) remain largely unexplored. In this study, we cloned one anthocyanidin reductase gene(ANR) and two leucocyanidin reductase gene(LAR) named FtANR,FtLAR1,FtLAR3 involved in formation of(+)-catechin and(-)-epicatechin precusor proanthocyanidin by digging out F. tataricum seed transcriptome data. The expression data showed that the opposite influence of red light on these gene transcript level compared to others lights. The expression levels of FtANR and FtLAR1 decreased and FtLAR3 appeared increment after exposed in the red light, while the expression levels of those genes appeared opposite result after exposed in the blue and far red light.
Fagopyrum
;
enzymology
;
radiation effects
;
Gene Expression Regulation, Plant
;
radiation effects
;
Light
;
NADH, NADPH Oxidoreductases
;
genetics
;
Plant Proteins
;
genetics
;
Proanthocyanidins
;
biosynthesis
;
Seeds
;
enzymology
;
radiation effects
2.Effects of shading on key enzyme genesexpression and accumulation of saponins in Panax japonicus var. major.
Wen-Jing HUANG ; Xiao-Chun SUN ; Bo LI ; Xin-Bo SHI ; Zheng-Gang YUE ; Xing-Hang CAI ; Jie YANG ; Zhi-Shu TANG
China Journal of Chinese Materia Medica 2018;43(19):3855-3861
To explore the effects of shading and the expression of key enzyme genes on the synthesis and accumulation of Panax japonicus var. major saponins, different shading treatments (0%, 30%,50%) of potted P. japonicus var. major were used as test materials, the expression of three key enzyme genes(CAS,DS,-AS) of leaves and rhizomes in different growth periods of P. japonicus var. major was determined by real-time quantitative PCR, the content of total saponins was determined by ultraviolet spectrophotometry. The results indicated that, in flowering stage, CAS,DS,-AS were highly expressed in the aerial parts of P. japonicus var. major, 30% shading treatment significantly inhibited the expression of CAS in leaves and promoted the expression of DS and -AS in stems, leaves and flowers, it was speculated that the main part of saponin synthesis was leaf in this stage. Both the expression levels of DS and -AS and changes in the content of total saponins in leaves showed a tendency of low-high-low throughout the growth cycle, correlation coefficient analysis showed that there was a positive correlation between them. Compared with control, the expression levels of DS and -AS and the content of total saponins were greatly enhanced under shading treatment, 30% shading treatment significantly promoted the accumulation of total saponins. Therefore, it is suggested that 30% shading treatment should be applied to the artificial cultivation of P. japonicus var. major, which is beneficial to the accumulation and quality improvement of saponins.
Gene Expression Regulation, Plant
;
Light
;
Panax
;
enzymology
;
genetics
;
radiation effects
;
Plant Leaves
;
enzymology
;
genetics
;
Rhizome
;
enzymology
;
genetics
;
Saponins
;
analysis
3.Construction of transgenic tobacco expressing tomato GGPS2 gene and analysis of its low light tolerance.
Cuiping LI ; Weihua DONG ; Xingguo ZHANG
Chinese Journal of Biotechnology 2015;31(5):692-701
To explore the influence of low light on the synthesis of carotenoids, chlorophyll and the adaptability of transgenic plants with tomato Solanum lycopersicon L. GGPS2 gene, we constructed a vector containing a GGPS2 gene with green fluorescent protein (GFP) as report gene under the control of a cauliflower mosaic virus 35S promoter and introduced it into tobacco Nicotiana tabacum L. cv. Wisconsin 38 by Agrobacterium tumefaciens-mediated transformation. PCR analysis of the DNA from kanamycin resistant tobacco indicated that the transgenic tobacco containing the nptII gene, SlaGGPS2 gene and without contamination of Agrobacterium. We also detected the root tip of kanamycin resistant tobacco showing characteristic fluorescence. The contents of carotenoid, chlorophyll and photosynthesis of transgenic tobacco increased in comparison with wild tobacco after low light treatment. In addition, leaf mass per unit area, total dry weight, ratio of root to shoot in transgenic tobacco were all higher than that of the wild tobacco, which proved that the transgenic tobacco could increase the accumulation of biomass and promote it transport to root. The transgenic tobacco with SlaGGPS2 gene can increase the contents of carotenoid, chlorophyll, enhance the photosynthetic rate, promote the biomass accumulation and its distribution to root. Hence, the transgenic tobacco with SlaGGPS2 gene had increased low light tolerance and the SlaGGPS2 gene maybe can be used in other crops.
Agrobacterium tumefaciens
;
Carotenoids
;
analysis
;
Chlorophyll
;
analysis
;
Gene Expression Regulation, Plant
;
Genetic Vectors
;
Light
;
Lycopersicon esculentum
;
genetics
;
Photosynthesis
;
Plants, Genetically Modified
;
metabolism
;
radiation effects
;
Tobacco
;
metabolism
;
radiation effects
4.Transcriptional and translational responses of rapeseed leaves to red and blue lights at the rosette stage.
Sheng-Xin CHANG ; Chu PU ; Rong-Zhan GUAN ; Min PU ; Zhi-Gang XU
Journal of Zhejiang University. Science. B 2018;19(8):581-595
Under different red (R):blue (B) photon flux ratios, the growth performance of rapeseed (Brassica napus L.) is significantly different. Rapeseed under high R ratios shows shade response, while under high B ratios it shows sun-type morphology. Rapeseed under monochromatic red or blue light is seriously stressed. Transcriptomic and proteomic methods were used to analyze the metabolic pathway change of rapeseed (cv. "Zhongshuang 11") leaves under different R:B photon flux ratios (including 100R:0B%, 75R:25B%, 25R:75B%, and 0R:100B%), based on digital gene expression (DGE) and two-dimensional gel electrophoresis (2-DE). For DGE analysis, 2054 differentially expressed transcripts (|log2(fold change)|≥1, q<0.005) were detected among the treatments. High R ratios (100R:0B% and 75R:25B%) enhanced the expression of cellular structural components, mainly the cell wall and cell membrane. These components participated in plant epidermis development and anatomical structure morphogenesis. This might be related to the shade response induced by red light. High B ratios (25R:75B% and 0R:100B%) promoted the expression of chloroplast-related components, which might be involved in the formation of sun-type chloroplast induced by blue light. For 2-DE analysis, 37 protein spots showed more than a 2-fold difference in expression among the treatments. Monochromatic light (ML; 100R:0B% and 0R:100B%) stimulated accumulation of proteins associated with antioxidation, photosystem II (PSII), DNA and ribosome repairs, while compound light (CL; 75R:25B% and 25R:75B%) accelerated accumulation of proteins associated with carbohydrate, nucleic acid, amino acid, vitamin, and xanthophyll metabolisms. These findings can be useful in understanding the response mechanisms of rapeseed leaves to different R:B photon flux ratios.
Brassica napus/radiation effects*
;
Brassica rapa/radiation effects*
;
Carbon/chemistry*
;
Chloroplasts/radiation effects*
;
Computational Biology
;
Electrophoresis, Gel, Two-Dimensional
;
Gene Expression Regulation, Plant/radiation effects*
;
Image Processing, Computer-Assisted
;
Light
;
Mass Spectrometry
;
Metabolic Networks and Pathways
;
Nitrogen/chemistry*
;
Photons
;
Photosystem II Protein Complex/genetics*
;
Plant Leaves/radiation effects*
;
Plant Proteins/genetics*
;
Proteome
;
Ribosomes
;
Transcription, Genetic
;
Transcriptome
5.Effects of light intensity on associated enzyme activity and gene expression during callus formation of Vitis vinifera.
Rong LIU ; Guowei YANG ; Yueyan WU ; Huiyun RAO ; Xuefu LI ; Meiqin LI ; Pingxian QIAN
Chinese Journal of Biotechnology 2015;31(8):1219-1229
We analyzed the best light intensity for callus induction and maintenance in Vitis vinifera and explored the mechanism of grape callus browning. Tender stem segments of grape cultivar "gold finger" were used to study the effects of different light intensities (0, 500, 1 000, 1 500, 2 000, 2 500, 3 000 and 4 000 Lx) on the induction rate, browning rate and associated enzyme activity and gene expression during Vitis vinifera callus formation. The callus induction rate under 0, 500, 1 000 and 1 500 Lx was more than 92%, significantly higher than in other treatments (P < 0.05). A lower browning rate and better callus growth were also observed during subculture under 1 000 and 1 500 Lx treatments. We found that chlorogenic acid, caffeic acid, p-hydroxybenzoic acid and coumaric acid contents were correlated with the browning rate of callus, among which chlorogenic acid content was positively correlated with the browning rate (P < 0.05). Peroxidase (POD) and polyphenol oxidase (PPO) activities were negatively correlated with the browning rate of callus (P < 0.01). The POD, PPO and phenylalanine ammonialyase (PAL) expression levels were positively correlated with the browning rate at P < 0.05 or P < 0.01. An appropriate light intensity for the tissue culture of Vitis vinifera was 1 000-1 500 Lx, higher or lower light intensities significantly impaired normal callus growth.
Caffeic Acids
;
chemistry
;
Catechol Oxidase
;
chemistry
;
Culture Media
;
chemistry
;
Gene Expression Regulation, Plant
;
Light
;
Peroxidase
;
metabolism
;
Phenylalanine Ammonia-Lyase
;
metabolism
;
Plant Stems
;
enzymology
;
radiation effects
;
Tissue Culture Techniques
;
Vitis
;
enzymology
;
radiation effects
6.Study on the asexual sporulation of Aspergillus niger under blue light induction and analysis of its subtractive library.
Chinese Journal of Biotechnology 2006;22(2):263-267
The effect of blue light (BL) on the morphological development of Aspergillus niger was studied by the scanning electron microscopy (SEM) observation. Comparing with the darkness, BL was able to stimulate development of sporangiophore and conidiosphore, promote grownth of mycelium. Suppression subtractive hybridization (SSH) was conducted with tester cDNA which was from 39 to approximately 40h-old mycelium cultured under darkness and driver cDNA which was from mycelium illuminated for 3 to approximately 4h under BL after dark growth. Some cDNA bands were obtained by suppression PCR (polymerase chain reaction) with the subtractive cDNA. Positive bacterial clones were randomly picked and identified by colony PCR method. Through sequence alignments from GenBank, most of differential cDNA fragments were highly identical with some redox enzymes existing in mitochondria, and the quantitative measurement of these differential mRNA by real time RT-PCR indicated that relative expression of the identified gene fragments under BL induction was higher than that under darkness. Furthermore, the result suggested that some respiratory chain redox enzymes of mitochondria were involved in the photoresponse and consequently influence the metabolism. Among differential cDNA fragments two unkown sequences were found and their complete gene and gene function remained to be investigated.
Aspergillus niger
;
genetics
;
radiation effects
;
ultrastructure
;
DNA, Complementary
;
genetics
;
DNA, Plant
;
genetics
;
Gene Expression Profiling
;
Gene Expression Regulation, Plant
;
radiation effects
;
Gene Library
;
Light
;
Microscopy, Electron, Scanning
;
Nucleic Acid Hybridization
;
Reproduction, Asexual
;
radiation effects
;
Reverse Transcriptase Polymerase Chain Reaction
;
Signal Transduction