1.Metabolic reprogramming by glutathione S-transferase enhances environmental adaptation of Streptococcus mutans.
Haoyue ZHENG ; Xian PENG ; Jing ZOU
West China Journal of Stomatology 2025;43(5):728-735
OBJECTIVES:
This study aims to investigate the impact of glutathione S-transferase (GST) on the environmental adaptability of Streptococcus mutans (S. mutans).
METHODS:
A GST knockout strain ΔgsT was constructed. Transcriptomic sequencing was performed to analyze the gene expression differences between the wild-type S. mutans UA159 and its GST knockout strain ΔgsT. Comprehensive functional assessments, including acid tolerance assays, hydrogen peroxide challenge assays, nutrient limitation growth assays, and fluorescence in situ hybridization, were conducted to evaluate the acid tolerance, antioxidant stress resistance, growth kinetics, and interspecies competitive ability of ΔgsT within plaque biofilms.
RESULTS:
Compared with the wild-type S. mutans, 198 genes in ΔgsT were significantly differentially expressed and enriched in pathways related to metabolism, stress response, and energy homeostasis. The survival rate of ΔgsT in acid tolerance assays was markedly reduced (P<0.01). After 15 min of hydrogen peroxide challenge, the survival rate of ΔgsT decreased to 38.12% (wild type, 71.75%). Under nutrient-limiting conditions, ΔgsT exhibited a significantly lower final OD600 value than the wild-type strain (P<0.05). In the biofilm competition assays, the proportion of S. mutans ΔgsT in the mixed biofilm (8.50%) was significantly lower than that of the wild type (16.89%) (P<0.05).
CONCLUSIONS
GST enhances the acid resistance, oxidative stress tolerance, and nutrient adaptation of S. mutans by regulating metabolism-related and stress response-related genes.
Streptococcus mutans/enzymology*
;
Biofilms
;
Glutathione Transferase/physiology*
;
Adaptation, Physiological
;
Hydrogen Peroxide/pharmacology*
;
Gene Expression Regulation, Bacterial
;
Oxidative Stress
;
Metabolic Reprogramming
2.Regulatory role of SoxR in Citrobacter braakii JPG1 in physiological response to aerobic/anaerobic-menadione stress.
Qiao XU ; Lei GAO ; Shenglei CHEN ; Yini ZHANG ; Xiaoyu WANG
Chinese Journal of Biotechnology 2025;41(4):1621-1630
SoxR, one of bacterial transcriptional regulators, plays a crucial role in bacterial responses to oxidative stress induced by unfavorable environmental conditions. So far, the understanding of bacterial responses to oxidative stress mainly stems from a handful model bacteria such as Escherichia coli and the studies on non-model bacterial responses to oxidative stress are limited. In this study, Citrobacter braakii JPG1, a commonly occurring strain of enterobacteria, was used as a model for the first time to explore the role of SoxR in the responses to aerobic/anaerobic-menadione stress. First, we analyzed the phylogenetic relationship of SoxR based on the whole genome and constructed the soxR-deleted strain (ΔsoxR). Then, the cell counts of the wild type (WT) and ΔsoxR were compared under aerobic/anaerobic-menadione stress. The results showed that the cell count of WT exposed to the aerobic-low concentration menadione (0.1 mmol/L) stress for 24 h increased by 4.2 times compared with that at the time point of 0 h, while that of ΔsoxR only increased by 1.3 times. The vast majority of WT and ΔsoxR cells died after exposure to the aerobic-high concentration menadione (0.3 mmol/L) stress for 24 h, with the cell counts only 29% and 0.2% of those at the time point of 0 h, respectively. Interestingly, the cell counts of WT showed no significant difference between the anaerobic-menadione stress and the control (P > 0.05), and the same was true for ΔsoxR. All these results indicated that SoxR of C. braakii JPG1 only has a regulatory effect on the redox cycling compound menadione under aerobic conditions and enhance the antioxidant capacity. Under anaerobic conditions, menadione failed to activate SoxR. The findings from this study provide new insights into understanding both the physiological responses to menadione stress and the regulatory role of SoxR under different oxygen conditions.
Bacterial Proteins/physiology*
;
Anaerobiosis
;
Aerobiosis
;
Vitamin K 3/pharmacology*
;
Citrobacter/metabolism*
;
Transcription Factors/physiology*
;
Oxidative Stress
;
Gene Expression Regulation, Bacterial
3.Reciprocal Regulation between Fur and Two RyhB Homologs in
Bin NI ; Hai Sheng WU ; You Quan XIN ; Qing Wen ZHANG ; Yi Quan ZHANG
Biomedical and Environmental Sciences 2021;34(4):299-308
Objective:
To investigate reciprocal regulation between Fur and two RyhB homologs in
Methods:
Regulatory relationships were assessed by a combination of colony morphology assay, primer extension, electrophoretic mobility shift assay and DNase I footprinting.
Results:
Fur bound to the promoter-proximal DNA regions of
Conclusion
Fur and the two RyhB homologs exert negative reciprocal regulation, and RyhB homologs have a positive regulatory effect on biofilm formation in
Bacterial Proteins/metabolism*
;
Biofilms
;
Gene Expression Regulation, Bacterial/physiology*
;
Yersinia pestis/physiology*
4.ToxR Is Required for Biofilm Formation and Motility of Vibrio Parahaemolyticus.
Long CHEN ; Yue QIU ; Hao TANG ; Ling Fei HU ; Wen Hui YANG ; Xiao Jue ZHU ; Xin Xiang HUANG ; Tang WANG ; Yi Quan ZHANG
Biomedical and Environmental Sciences 2018;31(11):848-850
Bacterial Proteins
;
genetics
;
metabolism
;
Biofilms
;
DNA-Binding Proteins
;
genetics
;
metabolism
;
Flagella
;
genetics
;
metabolism
;
Gene Expression Regulation, Bacterial
;
Transcription Factors
;
genetics
;
metabolism
;
Vibrio parahaemolyticus
;
cytology
;
genetics
;
growth & development
;
physiology
5.Examine the Correlation between Heat Shock Protein IbpA and Heat Tolerance in Cronobacter sakazakii.
Zhi Jing ZHAO ; Bin WANG ; Jing YUAN ; Hao Yu LIANG ; Si Guo DONG ; Ming ZENG
Biomedical and Environmental Sciences 2017;30(8):606-610
We used a proteomic approach to identify IbpA in Cronobacter sakazakii (C. sakazaki), which is related to heat tolerance in this strain. The abundance of IbpA in C. sakazakii strains strongly increased after heat shock. C. sakazakii CMCC 45402 ibpA deletion mutants were successfully constructed. The C. sakazakii CMCC 45402 ΔibpA and wild-type strains could not be distinguished based on colony morphology on LB agar plates or biochemical assays. The growth of the C. sakazakii CMCC 45402 ΔibpA mutant in heat shock conditions was indistinguishable from that of the isogenic wild-type, but showed greater heat resistance than E. coli O157:H7 strain CMCC 44828. This study suggests that the absence of a single ibpA gene has no obvious effect on the phenotype or heat resistance of the strain C. sakazakii CMCC 45402.
Bacterial Proteins
;
genetics
;
metabolism
;
Cronobacter sakazakii
;
genetics
;
physiology
;
Gene Expression Regulation, Bacterial
;
physiology
;
Genotype
;
Heat-Shock Proteins
;
genetics
;
metabolism
;
Hot Temperature
;
Stress, Physiological
6.A Five-year Surveillance of Carbapenemase-producing Klebsiella pneumoniae in a Pediatric Hospital in China Reveals Increased Predominance of NDM-1.
Fang DONG ; Jie LU ; Yan WANG ; Jin SHI ; Jing Hui ZHEN ; Ping CHU ; Yang ZHEN ; Shu Jing HAN ; Yong Li GUO ; Wen Qi SONG ;
Biomedical and Environmental Sciences 2017;30(8):562-569
OBJECTIVETo characterize carbapenem (CPM)-non-susceptible Klebsiella pneumoniae (K. pneumoniae) and carbape-nemase produced by these strains isolated from Beijing Children's Hospital based on a five-year surveillance.
METHODSThe Minimal Inhibition Concentration values for 15 antibiotics were assessed using the Phonix100 compact system. PCR amplification and DNA sequencing were used to detect genes encoding carbapenemases. WHONET 5.6 was finally used for resistance analysis.
RESULTSIn total, 179 strains of CPM-non-susceptible K. pneumoniae were isolated from January, 2010 to December, 2014. The rates of non-susceptible to imipenem and meropenem were 95.0% and 95.6%, respectively. In the 179 strains, 95 (53.1%) strains carried the blaIMP gene, and IMP-4 and IMP-8 were detected in 92 (96.8%) and 3 (3.2%) IMP-producing isolates, respectively. 65 (36.3%) strains carried the blaNDM-1 gene. 6 (3.4%) strains carried the blaKPC gene, and KPC-2 were detected in 6 KPC-producing isolates. In addition, New Delhi-Metallo-1 (NDM-1) producing isolates increased from 7.1% to 63.0% in five years and IMP-4 producing isolates decreased from 75.0% to 28.3%.
CONCLUSIONHigh frequencies of multiple resistances to antibiotics were observed in the CPM-non-susceptible K. pneumoniae strains isolated from Beijing Children's Hospital. The production of IMP-4 and NDM-1 metallo-β-lactamases appears to be an important mechanism for CPM-non- susceptible in K. pneumoniae.
Anti-Bacterial Agents ; pharmacology ; Bacterial Proteins ; genetics ; metabolism ; Child ; China ; epidemiology ; Drug Resistance ; Gene Expression Regulation, Bacterial ; physiology ; Gene Expression Regulation, Enzymologic ; physiology ; Hospitals, Pediatric ; Humans ; Klebsiella Infections ; epidemiology ; microbiology ; Klebsiella pneumoniae ; drug effects ; enzymology ; genetics ; Microbial Sensitivity Tests ; Population Surveillance ; Time Factors ; beta-Lactamases ; genetics ; metabolism
7.Structural insights into glutathione-mediated activation of the master regulator PrfA in Listeria monocytogenes.
Yong WANG ; Han FENG ; Yalan ZHU ; Pu GAO
Protein & Cell 2017;8(4):308-312
Bacterial Proteins
;
chemistry
;
genetics
;
metabolism
;
DNA, Bacterial
;
chemistry
;
genetics
;
metabolism
;
Gene Expression Regulation, Bacterial
;
physiology
;
Glutathione
;
metabolism
;
Listeria monocytogenes
;
chemistry
;
genetics
;
metabolism
;
Peptide Termination Factors
;
chemistry
;
genetics
;
metabolism
8.Activation of NF-κB and AP-1 Mediates Hyperproliferation by Inducing β-Catenin and c-Myc in Helicobacter pylori-Infected Gastric Epithelial Cells.
Eunyoung BYUN ; Bohye PARK ; Joo Weon LIM ; Hyeyoung KIM
Yonsei Medical Journal 2016;57(3):647-651
PURPOSE: In the gastric mucosa of Helicobacter pylori (H. pylori)-infected patients with gastritis or adenocarcinoma, proliferation of gastric epithelial cells is increased. Hyperproliferation is related to induction of oncogenes, such as β-catenin and c-myc. Even though transcription factors NF-κB and AP-1 are activated in H. pylori-infected cells, whether NF-κB or AP-1 regulates the expression of β-catenein or c-myc in H. pylori-infected cells has not been clarified. The present study was undertaken to investigate whether H. pylori-induced activation of NF-κB and AP-1 mediates the expression of oncogenes and hyperproliferation of gastric epithelial cells. MATERIALS AND METHODS: Gastric epithelial AGS cells were transiently transfected with mutant genes for IκBα (MAD3) and c-Jun (TAM67) or treated with a specific NF-κB inhibitor caffeic acid phenethyl ester (CAPE) or a selective AP-1 inhibitor SR-11302 to suppress activation of NF-κB or AP-1, respecively. As reference cells, the control vector pcDNA was transfected to the cells. Wild-type cells or transfected cells were cultured with or without H. pylori. RESULTS: H. pylori induced activation of NF-κB and AP-1, cell proliferation, and expression of oncogenes (β-catenein, c-myc) in AGS cells, which was inhibited by transfection of MAD3 and TAM67. Wild-type cells and the cells transfected with pcDNA showed similar activities of NF-κB and AP-1, proliferation, and oncogene expression regardless of treatment with H. pylori. Both CAPE and SR-11302 inhibited cell proliferation and expression of oncogenes in H. pylori-infected cells. CONCLUSION: H. pylori-induced activation of NF-κB and AP-1 regulates transcription of oncogenes and mediates hyperproliferation in gastric epithelial cells.
Blotting, Western
;
Caffeic Acids
;
Cell Line, Tumor
;
Cell Proliferation
;
DNA, Bacterial/analysis/genetics
;
DNA-Binding Proteins/*metabolism
;
Epithelial Cells/*metabolism
;
Gastric Mucosa/*metabolism/pathology
;
Gastritis/pathology
;
Gene Expression Regulation, Bacterial
;
Helicobacter Infections/metabolism/pathology/physiopathology
;
Helicobacter pylori/pathogenicity/physiology
;
Humans
;
NF-kappa B/antagonists & inhibitors/*biosynthesis/metabolism
;
Peptide Fragments
;
Phenylethyl Alcohol/analogs & derivatives
;
Proto-Oncogene Proteins c-jun
;
Repressor Proteins
;
Transcription Factor AP-1/*biosynthesis
;
Transcription Factors/*metabolism
;
beta Catenin/*metabolism
9.Jak1/Stat3 Is an Upstream Signaling of NF-kappaB Activation in Helicobacter pylori-Induced IL-8 Production in Gastric Epithelial AGS Cells.
Boram CHA ; Joo Weon LIM ; Hyeyoung KIM
Yonsei Medical Journal 2015;56(3):862-866
Helicobacter pylori (H. pylori) induces the activation of nuclear factor-kB (NF-kappaB) and cytokine expression in gastric epithelial cells. The Janus kinase/signal transducers and activators of transcription (Jak/Stat) cascade is the inflammatory signaling in various cells. The purpose of the present study is to determine whether H. pylori-induced activation of NF-kappaB and the expression of interleukin-8 (IL-8) are mediated by the activation of Jak1/Stat3 in gastric epithelial (AGS) cells. Thus, gastric epithelial AGS cells were infected with H. pylori in Korean isolates (HP99) at bacterium/cell ratio of 300:1, and the level of IL-8 in the medium was determined by enzyme-linked immonosorbent assay. Phospho-specific and total forms of Jak1/Stat3 and IkappaBalpha were assessed by Western blot analysis, and NF-kappaB activation was determined by electrophoretic mobility shift assay. The results showed that H. pylori induced the activation of Jak1/Stat3 and IL-8 production, which was inhibited by a Jak/Stat3 specific inhibitor AG490 in AGS cells in a dose-dependent manner. H. pylori-induced activation of NF-kappaB, determined by phosphorylation of IkappaBalpha and NF-kappaB-DNA binding activity, were inhibited by AG490. In conclusion, Jak1/Stat3 activation may mediate the activation of NF-kappaB and the expression of IL-8 in H. pylori-infected AGS cells. Inhibition of Jak1/Stat3 may be beneficial for the treatment of H. pylori-induced gastric inflammation, since the activation of NF-kappaB is inhibited and inflammatory cytokine expression is suppressed.
Blotting, Western
;
DNA, Bacterial/analysis/genetics
;
Epithelial Cells/metabolism
;
Gastric Mucosa/drug effects/*immunology/microbiology
;
Gene Expression Regulation/drug effects/*immunology
;
Gene Expression Regulation, Bacterial
;
Helicobacter Infections/immunology/*metabolism
;
Helicobacter pylori/genetics/pathogenicity/*physiology
;
Humans
;
Interleukin-8/genetics/*metabolism
;
Janus Kinase 1
;
NF-kappa B/biosynthesis/*metabolism
;
Phosphorylation
;
RNA, Messenger/metabolism
;
STAT3 Transcription Factor
;
Signal Transduction/genetics
10.Jak1/Stat3 Is an Upstream Signaling of NF-kappaB Activation in Helicobacter pylori-Induced IL-8 Production in Gastric Epithelial AGS Cells.
Boram CHA ; Joo Weon LIM ; Hyeyoung KIM
Yonsei Medical Journal 2015;56(3):862-866
Helicobacter pylori (H. pylori) induces the activation of nuclear factor-kB (NF-kappaB) and cytokine expression in gastric epithelial cells. The Janus kinase/signal transducers and activators of transcription (Jak/Stat) cascade is the inflammatory signaling in various cells. The purpose of the present study is to determine whether H. pylori-induced activation of NF-kappaB and the expression of interleukin-8 (IL-8) are mediated by the activation of Jak1/Stat3 in gastric epithelial (AGS) cells. Thus, gastric epithelial AGS cells were infected with H. pylori in Korean isolates (HP99) at bacterium/cell ratio of 300:1, and the level of IL-8 in the medium was determined by enzyme-linked immonosorbent assay. Phospho-specific and total forms of Jak1/Stat3 and IkappaBalpha were assessed by Western blot analysis, and NF-kappaB activation was determined by electrophoretic mobility shift assay. The results showed that H. pylori induced the activation of Jak1/Stat3 and IL-8 production, which was inhibited by a Jak/Stat3 specific inhibitor AG490 in AGS cells in a dose-dependent manner. H. pylori-induced activation of NF-kappaB, determined by phosphorylation of IkappaBalpha and NF-kappaB-DNA binding activity, were inhibited by AG490. In conclusion, Jak1/Stat3 activation may mediate the activation of NF-kappaB and the expression of IL-8 in H. pylori-infected AGS cells. Inhibition of Jak1/Stat3 may be beneficial for the treatment of H. pylori-induced gastric inflammation, since the activation of NF-kappaB is inhibited and inflammatory cytokine expression is suppressed.
Blotting, Western
;
DNA, Bacterial/analysis/genetics
;
Epithelial Cells/metabolism
;
Gastric Mucosa/drug effects/*immunology/microbiology
;
Gene Expression Regulation/drug effects/*immunology
;
Gene Expression Regulation, Bacterial
;
Helicobacter Infections/immunology/*metabolism
;
Helicobacter pylori/genetics/pathogenicity/*physiology
;
Humans
;
Interleukin-8/genetics/*metabolism
;
Janus Kinase 1
;
NF-kappa B/biosynthesis/*metabolism
;
Phosphorylation
;
RNA, Messenger/metabolism
;
STAT3 Transcription Factor
;
Signal Transduction/genetics

Result Analysis
Print
Save
E-mail