2.Identification and Validation of Candidate Radiation-responsive Genes for Human Biodosimetr.
Shuang LI ; Xue LU ; Jiang Bin FENG ; Mei TIAN ; Qing Jie LIU
Biomedical and Environmental Sciences 2017;30(11):834-840
The aim of the present study is to analyze the global research trend of radiation-responsive genes and identify the highly reproducible radiation-responsive genes. Bibliometric methods were applied to analyze the global research trend of radiation-responsive genes. We found 79 publications on radiation-responsive genes from 2000 to 2017. A total of 35 highly reproducible radiation-responsive genes were identified. Most genes are involved in response to DNA damage, cell proliferation, cell cycle regulation, and DNA repair. The p53 signal pathway was the top enriched pathway. The expression levels of 18 genes in human B lymphoblastoid cell line (AHH-1) cells were significantly up-regulated in a dose-dependent manner at 24 h after exposure to 0-5 Gy 60Co γ-ray irradiation. Our results indicate that developing a gene expression panel with the 35 high reproducibility radiation-responsive genes may be necessary for qualitative and quantitative assessment after exposure.
Dose-Response Relationship, Radiation
;
Gene Expression Profiling
;
Gene Expression Regulation
;
radiation effects
;
Humans
;
Radiometry
;
methods
;
Reproducibility of Results
;
Up-Regulation
;
radiation effects
3.Effects of radiosensitivity and X-ray dose on miR-7 expression in nasopharyngeal carcinoma.
Zhi-xian CHEN ; Ai-min SUN ; Yong CHEN ; Ying LIU ; Jun-fang ZHAN ; Long-hua CHEN ; Ya-wei YUAN
Journal of Southern Medical University 2010;30(8):1810-1816
OBJECTIVETo investigate the effects of radiosensitivity and X-ray dose on the expression of miR-7 in nasopharyngeal carcinoma (NPC) cells.
METHODSLow radiosensitive NPC cells CNE-1 and high radiosensitive NPC cells CNE-2 were exposed to 0, 2 and 8 Gy X-ray. The total RNAs of the cell lines were extracted 10 h after radiation for reverse transcription of miR-7 and 18S rRNA by stem-loop primer and random hexamers, respectively. The non-irradiated CNE-1 cells served as the control sample and the relative quantity of the expression level was calculated after real-time PCR using SyBR green.
RESULTSmiR-7 expression differed significantly between CNE-1 and CNE-2 cells (4.49-/+3.62 vs 1.29-/+1.10, F=135.483, P<0.001). The radiation dose also significantly affected the expression of miR-7 in NPC cells (F=39.565, P<0.001). CNE-1 cells with a 2 Gy exposure had the highest expression level of miR-7, while the non-irradiated CNE-1 cells had the lowest expression. CNE-2 cells exposed to 2 Gy X-ray had the lowest expression level of miR-7 and the non-irradiated CNE-2 cells had the highest.
CONCLUSIONRadiosensitivity and radiation dose of X-ray have significant effect on the expression of miR-7 in NPC cells, indicating that miR-7 plays an important role in radioresistance of NPC cells to X-ray, and suppressed miR-7 expression may elevate the radiosensitivity of NPC cells.
Apoptosis ; radiation effects ; Carcinoma ; Cell Line, Tumor ; Dose-Response Relationship, Radiation ; Gene Expression Regulation, Neoplastic ; radiation effects ; Humans ; MicroRNAs ; genetics ; Nasopharyngeal Neoplasms ; genetics ; Radiation Tolerance ; genetics ; X-Rays
4.Quantitative Evaluation of Viability- and Apoptosis-Related Genes in Ascaris suum Eggs under Different Culture-Temperature Conditions.
Yong Man YU ; You Hang CHO ; Young Nam YOUN ; Juan Hua QUAN ; In Wook CHOI ; Young Ha LEE
The Korean Journal of Parasitology 2012;50(3):243-247
Ascaris suum eggs are inactivated by composting conditions; however, it is difficult to find functional changes in heat-treated A. suum eggs. Here, unembryonated A. suum eggs were incubated at 20degrees C, 50degrees C, and 70degrees C in vitro, and the gene expression levels related to viability, such as eukaryotic translation initiation factor 4E (IF4E), phosphofructokinase 1 (PFK1), and thioredoxin 1 (TRX1), and to apoptosis, such as apoptosis-inducing factor 1 (AIF1) and cell death protein 6 (CDP6), were evaluated by real-time quantitative RT-PCR. No prominent morphological alterations were noted in the eggs at 20degrees C until day 10. In contrast, the eggs developed rapidly, and embryonated eggs and hatched larvae began to die, starting on day 2 at 50degrees C and day 1 at 70degrees C. At 20degrees C, IF4E, PFK1, and TRX1 mRNA expression was significantly increased from days 2-4; however, AIF1 and CDP6 mRNA expression was not changed significantly. IF4E, PFK1, and TRX1 mRNA expression was markedly decreased from day 2 at 50degrees C and 70degrees C, whereas AIF1 and CDP6 mRNA expression was significantly increased. The expressions of HSP70 and HSP90 were detected for 9-10 days at 20degrees C, for 3-5 days at 50degrees C, and for 2 days at 70degrees C. Taken together, incremental heat increases were associated with the rapid development of A. suum eggs, decreased expression of genes related to viability, and earlier expression of apoptosis-related genes, and finally these changes of viability- and apoptosis-related genes of A. suum eggs were associated with survival of the eggs under temperature stress.
Animals
;
*Apoptosis
;
Ascaris suum/*genetics/*radiation effects
;
Cell Survival/radiation effects
;
Eggs/radiation effects
;
Female
;
Gene Expression Profiling
;
Gene Expression Regulation/*radiation effects
;
Real-Time Polymerase Chain Reaction
;
Survival Analysis
;
Temperature
5.Non-thermal bioeffects of static and extremely low frequency electromagnetic fields.
Pingping ZHANG ; Ruochun YIN ; Lifang WU ; Yuejin WU ; Zengliang YU
Journal of Biomedical Engineering 2007;24(6):1411-1415
Since epidemiologic studies have reported a modestly increased risk of oncogenesis associated with certain electromagnetic fields (EMF), popular media and scientists have raised concerns about possible health hazards of environmental exposure to EMF. Laboratory-based experiments have shown that a variety of biological responses were induced by EMF, although these results were controversial and conflicting. The non-thermal effects of low energy EMF,the possible interaction of EMF with biological system have become focus topics in the biolectromagnetic fields. This paper focuses on recent studies of static and extremely low frequency electromagnetic fields, especially the interactive mechanism between EMF and cellular membrane and protein kinase signal transduction pathways. The potential genetic toxicity and risk evaluation are also discussed. However, the existence of some positive findings and the limitations in the set of studies suggest a need for more work.
DNA Damage
;
radiation effects
;
Electromagnetic Fields
;
adverse effects
;
Environmental Exposure
;
Gene Expression Regulation
;
Humans
;
Neoplasms, Radiation-Induced
;
etiology
6.Effects of GSM 1800 MHz radiofrequency electromagnetic fields on protein expression profile of human breast cancer cell MCF-7.
Qun-li ZENG ; Yu WENG ; Guang-di CHEN ; De-qiang LU ; Huai CHIANG ; Zheng-ping XU
Chinese Journal of Preventive Medicine 2006;40(3):153-158
OBJECTIVETo study the effects of GSM 1800 MHz radiofrequency electromagnetic fields (RF EMF) exposure on protein expression profile of human breast cancer cell line (MCF-7), as to exploring the possible effects on normal cell physiological function.
METHODSMCF-7 cells were continuously or intermittently (5 minutes field on followed by 10 minutes off) exposed to RF EMF for different duration (1 hour, 3 hours, 6 hours, 12 hours, or 24 hours) at an average specific absorption rate (SAR) of 3.5 W/kg. The extracted proteins were separated by 2-dimensional electrophoresis and the protein-spot distribution of the silver-stained gels was analyzed by using PDQuest software 7.1. Each experiment was repeated three times.
RESULTSOn the average, around 1100 proteins were detected using pH 4 - 7 IPG strip. There were no differential proteins found under continuous exposure at SAR of 3.5 W/kg for 6 hours. Under other exposure conditions, we found various differentially expressed proteins in exposure groups as compared with the sham-exposed controls. Especially in 3 hours intermittent exposure and 12 hours continuous exposure, eighteen and seven differential proteins were detected, respectively. The categories and functions of these differentially expressed proteins were analyzed by searching of SWISS-PROT protein database, which suggested that these proteins should be related to the functions of biosynthesization, signal transduction, and DNA damage and repair.
CONCLUSIONSData indicated that the protein expression changes induced by RF radiation might depend on exposure duration and mode. Many biological processes might be affected by RF exposure.
Cell Line, Tumor ; radiation effects ; Dose-Response Relationship, Radiation ; Electromagnetic Fields ; adverse effects ; Female ; Gene Expression ; Humans ; Proteome ; Radio Waves
7.Global gene response to GSM 1800 MHz radiofrequency electromagnetic field in MCF-7 cells.
Ling-li WANG ; Guang-di CHEN ; De-qiang LU ; Huai CHIANG ; Zheng-ping XU
Chinese Journal of Preventive Medicine 2006;40(3):159-163
OBJECTIVETo investigate whether GSM 1800 MHz radiofrequency electromagnetic field (RF EMF) can change the gene expression profile in MCF-7 cells and to screen RF EMF responsive genes.
METHODSSubcultured MCF-7 cells were intermittently (5-minute fields on/10-minute fields off) exposed or sham-exposed to GSM 1800 MHz RF EMF, which was modulated by 217 Hz EMF, for 24 hours at an average specific absorption rate (SAR) of 2.0 W/kg or 3.5 W/kg. Immediately after RF EMF exposure or sham-exposure, total RNA was isolated from MCF-7 cells and then purified. Affymetrix Human Genome U133A Genechip was applied to examine the change of gene expression profile according to the manufacturer's instruction. Data was analyzed by Affymetrix Microarray Suite 5.0 (MAS 5.0) and Affymetrix Data Mining Tool 3.0 (DMT 3.0). Quantitative reverse transcription polymerase chain reaction (RT-PCR) was used to validate the differentially expressed genes identified by Genechip analysis.
RESULTSA small number of differential expression genes were found in each comparison after RF EMF exposure. Through reproducible and consistent analysis, no gene or five up-regulated genes were screened out after exposure to RF EMF at SAR of 2.0 W/kg or 3.5 W/kg, respectively. However, these five genes could not be further confirmed by RT-PCR.
CONCLUSIONThe present study did not provide clear evidence that RF EMF exposure might distinctly change the gene expression profile in MCF-7 cells under current experimental conditions, implying that the exposure might not affect the MCF-7 cell physiology, or this cell line might be less sensitive to the RF EMF exposure.
Cell Line, Tumor ; radiation effects ; Electromagnetic Fields ; adverse effects ; Female ; Gene Expression ; Gene Expression Profiling ; Humans ; Radiation Dosage ; Radio Waves ; Reverse Transcriptase Polymerase Chain Reaction
8.Influence of light on gene expression of key synthesis enzyme genes FtANR and FtLAR about proanthocyanidin in seeds of homologous plant of food and medicine Fagopyrum tataricum.
Chun-Li JIANG ; Xin-Yao SU ; Ya-Chun XU ; Er-Yi WU ; Yu-Hua SHI ; Dong ZHANG ; Qing-Fu CHEN ; Wei SUN ; Jian-Ping XUE
China Journal of Chinese Materia Medica 2018;43(3):469-477
Tartary buckwheat Fagopyrum tataricum is an important medicinal and functional herb due to its rich content of flavonoids in the seeds. F.tataricum exhibited good functions for free radicals scavenging, anti-oxidation, anti-aging activities. Although much genetic knowledge of the synthesis, regulation, accumulation of rutin, the genetic basis of proanthocyanidins(PAs) in tartary buckwheat and their related gene expression changes under different lights(blue, red, far red, ultraviolet light) remain largely unexplored. In this study, we cloned one anthocyanidin reductase gene(ANR) and two leucocyanidin reductase gene(LAR) named FtANR,FtLAR1,FtLAR3 involved in formation of(+)-catechin and(-)-epicatechin precusor proanthocyanidin by digging out F. tataricum seed transcriptome data. The expression data showed that the opposite influence of red light on these gene transcript level compared to others lights. The expression levels of FtANR and FtLAR1 decreased and FtLAR3 appeared increment after exposed in the red light, while the expression levels of those genes appeared opposite result after exposed in the blue and far red light.
Fagopyrum
;
enzymology
;
radiation effects
;
Gene Expression Regulation, Plant
;
radiation effects
;
Light
;
NADH, NADPH Oxidoreductases
;
genetics
;
Plant Proteins
;
genetics
;
Proanthocyanidins
;
biosynthesis
;
Seeds
;
enzymology
;
radiation effects
9.Role of Caspase-3 in acute light damage to retina of rats.
Xiao WANG ; Shi-Xing HU ; Wei LI ; Shao-Chun LIN
Chinese Medical Sciences Journal 2007;22(1):44-48
OBJECTIVETo investigate the role of Caspase-3 in retinal damage caused by light exposure in rats.
METHODSLight injury to retina was induced by persistent exposure to illumination (intensity: 30 000 +/- 50 lux) of operating microscope for 30 minutes in the right eyes of Sprague-Dawley rats. The pathological changes of retina were observed under optical and electron microscopies at different time points, which were 6 hours, 1, 3, 7, and 15 days after the light exposure. Apoptosis of retinal cells was analyzed by flow cytometry. The activity of Caspase-3 was evaluated by using the Caspase-3 assay kit. At the same time, the expression of Caspase-3 protease was determined with Western blot analysis.
RESULTSThe examination results of optical and transmission electron microscopes showed that edema of inner and outer segments of the retina, especially the chondriosome inside the inner segment, became obvious 6 hours after the light exposure. The change was deteriorated along with the increasing time. The structures of the discoidal valve dissociated in the outer segment simultaneously. Disorderly arranged nuclei, karyopycnosis, and thinning in the outer nuclear layer were observed. The retinal pigment epithelium almost disappeared during the later stage. The staining results of Annexin-V combined with PI demonstrated that the proportion of apoptotic cells increased with time. The proportion between 7th day (82.7%) and 15th day (80.4%), however, showed no significant difference. Caspase-3 became remarkably active with the lapse of time, which increased from 0.02 at 6th hour to the peak of 9.8 at 7th day before it started to descend. The Western blot detected a expression of the active form of Caspase-3 at 7th day and 15th day.
CONCLUSIONApoptosis of photoreceptor cells is markedly involved in the light damage and Caspase-3 protease may play an important role in the apoptotic process of the retina after light exposure in rats.
Animals ; Apoptosis ; radiation effects ; Caspase 3 ; genetics ; metabolism ; radiation effects ; Dose-Response Relationship, Radiation ; Enzyme Activation ; Gene Expression Regulation, Enzymologic ; radiation effects ; Light ; adverse effects ; Rats ; Rats, Sprague-Dawley ; Retina ; enzymology ; pathology ; radiation effects ; ultrastructure
10.Effect of curcumin on radiosensitization of CNE-2 cells and its mechanism.
Qi-Rui WANG ; Hao-Ning FAN ; Zhi-Xin YIN ; Hong-Bing CAI ; Meng SHAO ; Jian-Xin DIAO ; Yuan-Liang LIU ; Xue-Gang SUN ; Li TONG ; Qin FAN
China Journal of Chinese Materia Medica 2014;39(3):507-510
OBJECTIVETo investigate the effect of curcumin (Cur) on radiosensitivity of nasopharyngeal carcinoma cell CNE-2 and its mechanism.
METHODThe effect of curcumin on radiosensitivity was determined by the clone formation assay. The cell survival curve was fitted by Graph prism 6. 0. The changes in cell cycle were analyzed by flow cytometry (FCM). The differential expression of long non-coding RNA was detected by gene chip technology. Part of differentially expressed genes was verified by Real-time PCR.
RESULTAfter 10 micro mol L-1 Cur had worked for 24 h, its sensitization enhancement ratio was 1. 03, indicating that low concentration of curcumin could increase the radiosensitivity of nasopharyngeal carcinoma cells; FCM displayed a significant increase of G2 phase cells and significant decrease of S phase cells in the Cur combined radiation group. In the Cur group, the GUCY2GP, H2BFXP, LINC00623 IncRNA were significantly up-regulated and ZRANB2-AS2 LOC100506835, FLJ36000 IncRNA were significantly down-regulated.
CONCLUSIONCur has radiosensitizing effect on human nasopharyngeal carcinoma CNE-2 cells. Its mechanism may be related to the changes in the cell cycle distribution and the expression of long non-coding IncRNA.
Cell Cycle ; drug effects ; radiation effects ; Cell Line, Tumor ; Cell Survival ; drug effects ; radiation effects ; Curcumin ; pharmacology ; Gene Expression Regulation, Neoplastic ; drug effects ; radiation effects ; Humans ; RNA, Long Noncoding ; genetics ; Radiation Tolerance ; drug effects