1.Recent advances in CRISPR research.
Baohui CHEN ; Yuyu NIU ; Haoyi WANG ; Kejian WANG ; Hui YANG ; Wei LI
Protein & Cell 2020;11(11):786-791
2.Effective and precise adenine base editing in mouse zygotes.
Puping LIANG ; Hongwei SUN ; Xiya ZHANG ; Xiaowei XIE ; Jinran ZHANG ; Yaofu BAI ; Xueling OUYANG ; Shengyao ZHI ; Yuanyan XIONG ; Wenbin MA ; Dan LIU ; Junjiu HUANG ; Zhou SONGYANG
Protein & Cell 2018;9(9):808-813
Adenine
;
Animals
;
Gene Editing
;
Mice
;
Zygote
;
metabolism
3.Development and verification of an FLP/FRT system for gene editing in Bacillus licheniformis.
Zongwen LI ; Youran LI ; Zhenghua GU ; Zhongyang DING ; Liang ZHANG ; Sha XU ; Guiyang SHI
Chinese Journal of Biotechnology 2019;35(3):458-471
Few tools of gene editing have been developed in Bacillus licheniformis at present. In order to enrich the tools, an FLP/FRT gene editing system that can repeatedly use a single selectable marker was constructed in Bacillus licheniformis, and the system was verified by knocking out an alpha amylase gene (amyL), an protease gene (aprE) and knocking in an exogenous Vitreoscilla hemoglobin gene (vgb). First, knock-out plasmids pNZTT-AFKF of amyL and pNZTT-EFKF of aprE were constructed using thermosensitive plasmid pNZT1 as a carrier. The two knock-out plasmids contained respective homology arms, resistance genes and FRT sites. Then the knock-out plasmids were transformed into Bacillus licheniformis and the target genes were replaced by respective deletion cassette via twice homologous exchange. Finally, an expression plasmid containing FLP recombinase reading frane was introduced and mediated the excision of resistance marker. In order to expand the practicability of the system, knock-in plasmid pNZTK-PFTF-vgb was constructed, with which knock-in of vgb at pflB site was carried out successfully. The results showed that amyL and aprE were successfully knocked out and the marker kanamycin cassette exactly excised. The activities of amylase and protease of deletion mutants were reduced by 95.3% and 80.4% respectively. vgb was successfully knocked in at pflB site and the marker tetracycline cassette excised. The expression of integrated vgb was verified via real-time PCR. It is the first time to construct an FLP/FRT system for gene editing in Bacillus licheniformis, which could provide an effective technical means for genetic modification.
Bacillus licheniformis
;
Gene Editing
;
Plasmids
;
Sequence Deletion
4.Gene editing for the treatment of primary immunodeficiency disease.
Shan LIU ; Shu-Yu FANG ; Yun-Fei AN
Chinese Journal of Contemporary Pediatrics 2021;23(7):743-748
Gene editing is an advanced technique based on artificial nucleases and can precisely modify genome sequences. It has shown great application prospects in the field of medicine and has provided a new precision therapy for diseases. Primary immunodeficiency disease is a group of diseases caused by single gene mutation and characterized by recurrent and refractory infections, with an extremely high mortality rate. The application of gene editing has brought hope for curing these diseases. This article reviews the development of gene editing technology and briefly introduces the research and application of gene editing technology in primary immunodeficiency disease.
Gene Editing
;
Humans
;
Primary Immunodeficiency Diseases
6.Advances in gene editing and natural product synthesis of Rhodotorula toruloides.
Qidou GAO ; Yaqi DONG ; Ying HUANG ; Yijuan LIU ; Xiaobing YANG
Chinese Journal of Biotechnology 2023;39(6):2313-2333
Rhodotorula toruloides is a non-conventional red yeast that can synthesize various carotenoids and lipids. It can utilize a variety of cost-effective raw materials, tolerate and assimilate toxic inhibitors in lignocellulosic hydrolysate. At present, it is widely investigated for the production of microbial lipids, terpenes, high-value enzymes, sugar alcohols and polyketides. Given its broad industrial application prospects, researchers have carried out multi-dimensional theoretical and technological exploration, including research on genomics, transcriptomics, proteomics and genetic operation platform. Here we review the recent progress in metabolic engineering and natural product synthesis of R. toruloides, and prospect the challenges and possible solutions in the construction of R. toruloides cell factory.
Gene Editing
;
Metabolic Engineering
;
Rhodotorula/metabolism*
;
Lipids
7.Construction of seamless genome editing system for fast-growing Vibrio natriegens.
Fengli WU ; Yanxia LIANG ; Yuanyuan ZHANG ; Yanan HUO ; Qinhong WANG
Chinese Journal of Biotechnology 2020;36(11):2387-2397
Recently, fast-growing Vibrio natriegens, as the great potential chassis, has shown a wide application in synthetic biology. Genome editing is an indispensable tool for genetic modification in synthetic biology. However, genome editing tools with high efficiency and fidelity are still to be developed for V. natriegens synthetic biology. To deal with this problem, the physiological characteristics of 6 V. natriegens strains were evaluated, and CICC 10908 strain with fast and stable growth was selected as the host strain for genome editing study. Then, the natural transformation system of V. natriegens was established and optimized. The efficiencies of optimized natural transformation that integrates antibiotic resistance marker cat-sacB or Kan(R) onto the chromosome of V. natriegens could reach 4×10⁻⁵ and 4×10⁻⁴, respectively. Based on the optimized natural transformation, a double-selection cassette was used to achieve seamless genome editing with high efficiency and fidelity. The positive rates of four different types of genetic manipulation, including gene deletion, complementation, insertion and substitution, were 93.8%, 100%, 95.7% and 100%, respectively. Finally, transformation and elimination of the recombinant plasmid could be easily achieved in V. natriegens. This work provides a seamless genome editing system with high efficiency and fidelity for V. natriegens synthetic biology.
Gene Editing
;
Plasmids/genetics*
;
Synthetic Biology
;
Vibrio/genetics*
8.Recent advances in developing enabling technologies for Corynebacterium glutamicum metabolic engineering.
Yu WANG ; Ping ZHENG ; Jibin SUN
Chinese Journal of Biotechnology 2021;37(5):1603-1618
Corynebacterium glutamicum is an important workhorse of industrial biotechnology, especially for amino acid bioindustry. This bacterium is being used to produce various amino acids at a level of over 6 million tons per year. In recent years, enabling technologies for C. glutamicum metabolic engineering have been developed and improved, which accelerated construction and optimization of microbial cell factoriers, expanding spectra of substrates and products, and facilitated basic researches on C. glutamicum. With these technologies, C. glutamicum has become one of the ideal microbial chasses. This review summarizes recent key technological developments of enabling technologies for C. glutamicum metabolic engineering and focuses on establishment and applications of CRISPR-based genome editing, gene expression regulation, adaptive laboratory evolution, and biosensor technologies.
Amino Acids
;
Biotechnology
;
Corynebacterium glutamicum/genetics*
;
Gene Editing
;
Metabolic Engineering
10.Construction of a new isovalerylspiramycin I producing strain by CRISPR-Cas9 system.
Xiaoting ZHANG ; Yan ZHANG ; Jianlu DAI ; Yiguang WANG ; Weiqing HE
Chinese Journal of Biotechnology 2019;35(3):472-481
Isovalerylspiramycin (ISP)Ⅰ, as a major component of bitespiramycin (BT), exhibits similar antimicrobial activities with BT and has advantages in quality control and dosage forms. It has been under preclinical studies. The existing ISPⅠ producing strain, undergoing three genetic modifications, carries two resistant gene markers. Thus, it is hard for further genetic manipulation. It is a time-consuming and unsuccessful work to construct a new ISPⅠ strain without resistant gene marker by means of the classical homologous recombination in our preliminary experiments. Fortunately, construction of the markerless ISPⅠ strain, in which the bsm4 (responsible for acylation at 3 of spiramycin) gene was replaced by the Isovaleryltansferase gene (ist) under control of the constitutive promoter ermEp*, was efficiently achieved by using the CRISPR-Cas9 gene editing system. The mutant of bsm4 deletion can only produce SPⅠ. Isovaleryltransferase coded by ist catalyzes the isovalerylation of the SPⅠat C-4" hydroxyl group to produce ISPⅠ. As anticipated, ISPⅠ was the sole ISP component of the resultant strain (ΔEI) when detected by HPLC and mass spectrometry. The ΔEI mutant is suitable for further genetic engineering to obtain improved strains by reusing CRISPR-Cas9 system.
CRISPR-Cas Systems
;
Gene Editing
;
Genetic Engineering
;
Homologous Recombination