1.The effects of functional magnetic resonance imaging on motor cortex function in patients with cerebral ischemic stroke
Zi-Qian CHEN ; Ping NI ; Hui XIAO ; You-Qiang YE ; Gen-Nian QIAN ; Xi-Zhang YANG ; Jin-Liang WANG ; Shang-Wen XU ; Mei NIE ; Yu SONG ; Biyun ZHANG ;
Chinese Journal of Physical Medicine and Rehabilitation 2003;0(12):-
Objective To investigate the effects of functional magnetic resonance imaging (fMRI)with acute ischemic stroke (AIS) patients,and to evaluate the relationship between brain reorganization and motor recovery.Methods Nine AIS patients and 9 healthy volunteers were assessed by fMR1 during passive finger clenching at a pace of 1 Hz.The fMRI results were analyzed using SPM2 software.Lateral indices (LIs) and activated regions were calculated,and the relationship between LI and muscle strength was examined.Results In the control group,activation was observed in the contralateral sensorimotor cortex (SMC) and the bilateral supplementary area (SMA) during the passive movement.In the AIS group,similar results were recorded dur- ing unaffected hand movement,but the ipsilateral activation areas were greater than those on the eontralateral side during movement of the affected hand.LI results confirmed that movement of the affected hand mainly elici- ted activation in the ipsilateral hemisphere.Conclusion The different fMRI manifestations of patients and nor- mal subjects reflect brain compensation,and fMRI is valuable for studying the correlation between motor function and brain reorganization.
2.Posterior Nutcracker Syndrome Associated with Interrupted Left Inferior Vena Cava with Azygos Continuation and Retroaortic Right Renal Vein.
Xiao Li LUO ; Gen Nian QIAN ; Hui XIAO ; Chun Lei ZHAO ; Xiao Dong ZHOU
Korean Journal of Radiology 2012;13(3):345-349
Various anatomic anomalies have been considered the causes of nutcracker syndrome (NCS). Posterior NCS refers to the condition, in which vascular narrowing was secondary to the compression of the retroaortic left renal vein while it is crossing between the aorta and the vertebral column. Here, we report an unusual case of posterior NCS associated with a complicated malformation of the interrupted left inferior vena cava with azygos continuation and retroaortic right renal vein, diagnosed by both color Doppler ultrasonography and CT angiography.
Adult
;
Azygos Vein/*abnormalities
;
Diagnosis, Differential
;
Female
;
Humans
;
Renal Nutcracker Syndrome/*radiography/*ultrasonography
;
Renal Veins/*abnormalities
;
Tomography, X-Ray Computed
;
Vena Cava, Inferior/*abnormalities
3.Material basis and mechanism of Huangqin Tea in prevention of colorectal cancer based on network pharmacology and molecular docking.
Yue WANG ; Jie SHEN ; Qian HE ; Kai-Lin YANG ; Chun-Nian HE ; Pei-Gen XIAO
China Journal of Chinese Materia Medica 2021;46(23):6251-6260
Colorectal cancer is a malignancy with high mortality. Huangqin Tea(HQT) can exert potential preventive and therapeutic effects on colorectal cancer. Flavonoids are the main compounds in HQT, but the pharmacodynamic material basis and mechanism are unclear. Network pharmacology and molecular docking were used to predict and analyze the targets and signaling pathways of HQT in the prevention and treatment of colorectal cancer. The active components of flavonoids in HQT were searched and screened out by literature review and FAFDrugs4. The related targets of active components were predicted by SwissTargetPrediction, STITCH, and TCMSP. Colorectal cancer-related genes were collected from OMIM, TTD, and GeneCards. The common targets were obtained as the potential targets of HQT in the prevention and treatment of colorectal cancer. Metascape was used for GO function enrichment and KEGG pathway enrichment analyses. Cytoscape was used to construct the protein-protein interaction(PPI) network and "component-target-disease-pathway" network to obtained and analyze core targets and key components. AutoDock Vina was used for molecular docking verification of key components and core targets. The results showed that apigenin, luteolin, wogonin, and baicalein were presumedly the key active components in the prevention and treatment of colorectal cancer, and core targets included TP53, AKT1, VEGFA, PIK3 CA, and SRC. The key KEGG signaling pathways mainly involved PI3 K-AKT, AGE-RAGE, p53, NF-κB, Wnt, Hippo, and calcium signaling pathways. Further molecular docking results showed that four key components showed strong hydrogen bonding ability with the five core targets. This study preliminarily reveals the pharmacodynamic material basis and potential mechanism of HQT in the prevention and treatment of colorectal cancer and provides a theoretical and scientific basis for the application of HQT.
Colorectal Neoplasms/prevention & control*
;
Drugs, Chinese Herbal
;
Humans
;
Molecular Docking Simulation
;
Network Pharmacology
;
Scutellaria baicalensis
;
Tea
4.Prediction of quality markers and medicinal value of sea buckthorn leaves based on network pharmacology, content determination, and activity evaluation.
Qian HE ; Kai-Lin YANG ; Xin-Yan WU ; Bo ZHANG ; Chun-Hong ZHANG ; Chun-Nian HE ; Pei-Gen XIAO
China Journal of Chinese Materia Medica 2023;48(20):5487-5497
The leaves of sea buckthorn(Hippophae rhamnoides), considered as common food raw materials, have records of medicinal use and diverse pharmacological activities, showing a potential medicinal value. However, the active substances in the sea buckthorn leaves and their mechanisms of action remain unclear. In addition, due to the extensive source and large variety variations, the quality evaluation criteria of sea buckthorn leaves remain to be developed. To solve the problems, this study predicted the main active components, core targets, key pathways, and potential pharmacological effects of sea buckthorn leaves by network pharmacology and molecular docking. Furthermore, ultra-performance liquid chromatography with diode-array detection(UPLC-DAD) was employed to determine the content of active components and establish the chemical fingerprint, on the basis of which the quality markers of sea buckthorn leaves were predicted and then verified by the enzyme activity inhibition method. The results indicated that sea buckthorn leaves had potential therapeutic effects on a variety of digestive tract diseases, metabolic diseases, tumors, and autoimmune diseases, which were consistent with the ancient records and the results of modern pharmacological studies. The core targets of sea buckthorn leaves included PTPN11, AKT1, PIK3R1, ESR1, and SRC, which were mainly involved in the PI3K-AKT, MAPK, and HIF-1 signaling pathways. In conclusion, the active components of sea buckthorn leaves are associated with the rich flavonoids and tannins, among which quercitrin, narcissoside, and ellagic acid can be used as the quality markers of sea buckthorn leaves. The findings provide a reference for the quality control and further development and utilization of sea buckthorn leaves as medicinal materials.
Hippophae/chemistry*
;
Network Pharmacology
;
Molecular Docking Simulation
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Flavonoids/analysis*
;
Fruit/chemistry*