1.Comparison of propofol alone and in combination with ketamine or fentanyl for sedation in endoscopic ultrasonography
Shweta A SINGH ; Kelika PRAKASH ; Sandeep SHARMA ; Gaurav DHAKATE ; Vikram BHATIA
Korean Journal of Anesthesiology 2018;71(1):43-47
BACKGROUND:
We evaluated whether the addition of a small dose of ketamine or fentanyl would lead to a reduction in the total dose of propofol consumed without compromising the safety and recovery of patients having endoscopic ultrasonography (EUS).
METHODS:
A total of 210 adult patients undergoing elective EUS under sedation were included in the study. Patients were randomized into three groups. Patients were premedicated intravenously with normal saline in group 1, 50 µg fentanyl in group 2, and 0.5 mg/kg ketamine in group 3. All patients received intravenous propofol for sedation. Propofol consumption in mg/kg/h was noted. The incidence of hypotension, bradycardia, desaturation, and coughing was noted. The time to achieve a Post Anesthesia Discharge Score (PADS) of 10 was also noted.
RESULTS:
There were 68 patients in group 1, 70 in group 2, and 72 in group 3. The amount of propofol consumed was significantly higher in group 1 (9.25 [7.3–13.2]) than in group 2 (8.8 [6.8–12.2]) and group 3 (7.6 [5.7–9.8]). Patient hemodynamics and oxygenation were well maintained and comparable in all groups. The time to achieve a PADS of 10 was significantly higher in group 3 compared to the other two groups.
CONCLUSIONS
The use of 50 µg fentanyl or 0.5 mg/kg ketamine in a single dose during EUS reduces the dose of propofol required for sedation. However, unlike the addition of fentanyl, the addition of ketamine increased the time to recovery. Thus, 50 µg fentanyl is a good additive to propofol infusion for sedation during EUS to reduce the requirement for propofol without affecting the time to recovery.
2.Comparison of propofol alone and in combination with ketamine or fentanyl for sedation in endoscopic ultrasonography
Shweta A SINGH ; Kelika PRAKASH ; Sandeep SHARMA ; Gaurav DHAKATE ; Vikram BHATIA
Korean Journal of Anesthesiology 2018;71(1):43-47
BACKGROUND: We evaluated whether the addition of a small dose of ketamine or fentanyl would lead to a reduction in the total dose of propofol consumed without compromising the safety and recovery of patients having endoscopic ultrasonography (EUS). METHODS: A total of 210 adult patients undergoing elective EUS under sedation were included in the study. Patients were randomized into three groups. Patients were premedicated intravenously with normal saline in group 1, 50 µg fentanyl in group 2, and 0.5 mg/kg ketamine in group 3. All patients received intravenous propofol for sedation. Propofol consumption in mg/kg/h was noted. The incidence of hypotension, bradycardia, desaturation, and coughing was noted. The time to achieve a Post Anesthesia Discharge Score (PADS) of 10 was also noted. RESULTS: There were 68 patients in group 1, 70 in group 2, and 72 in group 3. The amount of propofol consumed was significantly higher in group 1 (9.25 [7.3–13.2]) than in group 2 (8.8 [6.8–12.2]) and group 3 (7.6 [5.7–9.8]). Patient hemodynamics and oxygenation were well maintained and comparable in all groups. The time to achieve a PADS of 10 was significantly higher in group 3 compared to the other two groups. CONCLUSIONS: The use of 50 µg fentanyl or 0.5 mg/kg ketamine in a single dose during EUS reduces the dose of propofol required for sedation. However, unlike the addition of fentanyl, the addition of ketamine increased the time to recovery. Thus, 50 µg fentanyl is a good additive to propofol infusion for sedation during EUS to reduce the requirement for propofol without affecting the time to recovery.
Adult
;
Anesthesia
;
Bradycardia
;
Cough
;
Endosonography
;
Fentanyl
;
Hemodynamics
;
Humans
;
Hypotension
;
Incidence
;
Ketamine
;
Oxygen
;
Propofol
3.Bacopa monnieri extracts prevent hydrogen peroxide-induced oxidative damage in a cellular model of neuroblastoma IMR32 cells.
Gaurav BHATIA ; Vikram DHUNA ; Kshitija DHUNA ; Manpreet KAUR ; Jatinder SINGH
Chinese Journal of Natural Medicines (English Ed.) 2017;15(11):834-846
Neurodegenerative diseases are the consequences of imbalance between the production of oxidative stress and its nullification by cellular defense mechanisms. Hydrogen peroxide (HO), a precursor of deleterious reactive oxygen species, elicits oxidative stress, resulting in severe brain injuries. Bacopa monnieri is well known for its nerve relaxing and memory enhancing properties. The present study was designed to evaluate the protective effects of extracts from Bacopa monnieri against HO induced oxidative stress using a cellular model, neuroblastoma IMR32 cell line. The protective potential of methanolic, ethanolic, and water extracts of B. monnieri (BM-MEx, BM-EEx, and BM-WEx) was evaluated using MTT assay. Although, all the B. monnieri extracts were found to protect cells against HO-mediated stress but BM-MEx showed significantly greater protection. UPLC analysis of BM-MEx revealed various polyphenols, including quercetin, catechin, umbelliferone, and caffeic acid predominance. Further, BM-MEx was found to possess considerable greater neuroprotective potential in comparison to the standard polyphenols such as quercetin, catechin, umbelliferone, and caffeic acid. The levels of antioxidant enzymes were significantly elevated after the pretreatment of BM-MEx and quercetin. The expression levels of oxidative stress markers, such as NF200, HSP70, and mortalin, were significantly alleviated after the pretreatment of BM-MEx as shown by immunofluorescence and RT-PCR. In conclusion, the present study demonstrated the protective effects of BM-MEx, suggesting that it could be a candidate for the development of neuropathological therapeutics.
Antioxidants
;
metabolism
;
pharmacology
;
Bacopa
;
chemistry
;
Cell Line
;
Humans
;
Hydrogen Peroxide
;
Neuroblastoma
;
Neurodegenerative Diseases
;
metabolism
;
Neuroprotective Agents
;
pharmacology
;
Oxidative Stress
;
drug effects
;
Plant Extracts
;
pharmacology
;
Polyphenols
;
analysis
;
pharmacology
;
Reactive Oxygen Species
;
metabolism