1.Gastrointestinal transit time of radiopaque ingested foreign bodies in children: experience of two paediatric tertiary centres.
Chen Xiang ANG ; Win Kai MUN ; Marion Margaret AW ; Diana LIN ; Shu-Ling CHONG ; Lin Yin ONG ; Shireen Anne NAH
Singapore medical journal 2025;66(1):24-27
INTRODUCTION:
Foreign body (FB) ingestion is a common paediatric emergency. While guidelines exist for urgent intervention, less is known of the natural progress of FBs passing through the gastrointestinal tract (GIT). We reviewed these FB transit times in an outpatient cohort.
METHODS:
A retrospective review was performed on all children (≤18 years) treated for radiopaque FB ingestion at two major tertiary paediatric centres from 2015 to 2016. Demographic data, FB types, outcomes and hospital visits (emergency department [ED] and outpatient) were recorded. All cases discharged from the ED with outpatient follow-up were included. We excluded those who were not given follow-up appointments and those admitted to inpatient wards. We categorised the outcomes into confirmed passage (ascertained via abdominal X-ray or reported direct stool visualisation by patients/caregivers) and assumed passage (if patients did not attend follow-up appointments).
RESULTS:
Of the 2,122 ED visits for FB ingestion, 350 patients who were given outpatient follow-up appointments were reviewed (median age 4.35 years [range: 0.5-14.7], 196 [56%] male). The largest proportion (16%) was aged 1-2 years. Coins were the most common ingested FB, followed by toys. High-risk FB (magnets or batteries) formed 9% of cases ( n =33). The 50 th centile for FB retention was 8, 4 and 7 days for coins, batteries and other radiopaque FBs, respectively; all confirmed passages occurred at 37, 7 and 23 days, respectively. Overall, 197 (68%) patients defaulted on their last given follow-up.
CONCLUSION
This study provides insight into the transit times of FB ingested by children, which helps medical professionals to decide on the optimal time for follow-up visits and provide appropriate counsel to caregivers.
Adolescent
;
Child
;
Child, Preschool
;
Female
;
Humans
;
Infant
;
Male
;
Eating
;
Emergency Service, Hospital
;
Foreign Bodies/diagnostic imaging*
;
Gastrointestinal Tract/diagnostic imaging*
;
Gastrointestinal Transit
;
Retrospective Studies
;
Singapore
;
Tertiary Care Centers
2.Current status of functional testing for upper gastrointestinal disorders: state-of-the-art review.
Andrew Xia Huang TAN ; Alex Yu Sen SOH ; Jonathan Ziyang KUANG ; Kewin Tien Ho SIAH ; Andrew Ming Liang ONG ; Daphne ANG
Singapore medical journal 2025;66(8):431-438
Neurogastroenterology and motility disorders of the upper gastrointestinal (GI) tract represent a complex and heterogeneous group of conditions that involve the interaction between the GI tract and the central nervous system. They constitute a significant number of outpatient gastroenterology visits, resulting in a high healthcare burden. These disorders often occur in the absence of identifiable structural causes on routine endoscopy and radiological imaging. A more targeted approach in the assessment of functional GI disorders is increasingly being integrated into routine clinical practice, given the recent advancements in technology and physiologic testing. When used in the appropriate clinical context, these tests not only elucidate the physiological basis for the patient's symptoms, but also prevent inappropriate treatment and repeated investigations. This review aims to summarise the advances in clinically available diagnostic tools for the evaluation of upper GI functional disorders.
Humans
;
Gastrointestinal Diseases/physiopathology*
;
Upper Gastrointestinal Tract/physiopathology*
;
Gastrointestinal Motility
;
Endoscopy, Gastrointestinal
3.Bidirectional regulation of distal colon motility in rats with electroacupuncture of different intensities at "Tianshu" (ST25).
Tong LI ; Xiaoyu LIU ; Xiaoyu WANG ; Min LUO ; Zhiyun ZHANG ; Yangshuai SU ; Xianghong JING
Chinese Acupuncture & Moxibustion 2025;45(4):460-472
OBJECTIVE:
To observe the distribution characteristics of sensitization areas on the body surface in the rat models with functional constipation and diarrhea, explore the regulatory patterns of electroacupuncture (EA) of different intensities at "Tianshu" (ST25) on distal colon motility, and clarify the roles of the neurons of different subtypes in the enteric nervous system (ENS) displayed in the regulatory effect.
METHODS:
Of 90 SD male rats of SPF grade, 15 rats were randomized into a normal group, a constipation group and a diarrhea group, 5 rats in each one. The stool form and fecal water content, as well as the distribution of the Evans blue (EB) extravasation on the body surface after the intravenous injection with EB on the tails were observed. Eighteen rats were randomized into a normal +2 mA group, a normal +4 mA group and a normal + 6 mA group, 6 rats in each one. Using physiological signal acquisition system, the area under the curve and the average amplitude of colon peristalsis were recorded and analyzed, and the immediate effect on distal colon peristalsis observed after EA with different intensities at "Tianshu" (ST25). Thirty rats were randomized into a normal group, a constipation group, a diarrhea group, a constipation +2 mA group, and a diarrhea +6 mA group, 6 rats in each one, so as to observe the cumulative effect on colon motility disorder in the rat models of constipation and diarrhea after EA at "Tianshu" (ST25). Twelve rats were randomized into a constipation +2 mA group and a diarrhea +6 mA group, 6 rats in each one, to observe the immediate effect on colon motility disorder in the rat models of constipation and diarrhea after EA at "Tianshu" (ST25). Fifteen rats were randomly divided into a normal group, a constipation group, a diarrhea group, a constipation +2 mA group, and a diarrhea + 6 mA group, 3 rats in each one. Using the whole-mount staining technique, the expression of vesicular acetylcholine transporter (VAChT)-positive neurons and nitric oxide synthase (nNOS)-positive neurons in ENS was detected. According to the group divisions, the functional constipation models were established by intragastric administration of loperamide hydrochloride (10 mg/kg, once daily, for consecutive 7 days), and the functional diarrhea models were prepared by intragastric administration of folium sennae decoction (10 mL/kg, once daily, for consecutive 2 days). The interventions were delivered with EA of different intensities (the electric current of 2, 4 or 6 mA) at bilateral "Tianshu" (ST25), separately, with the continuous wave and the frequency of 10 Hz used.
RESULTS:
Compared with the normal group, the fecal amount was decreased, and the fecal water content was reduced in the rats of the constipation group (P<0.001); and loose stool was presented and the fecal water content increased in rats of the diarrhea group (P<0.001). EB extravasation on the body surface happened in the region from T6 to S2 of the rats in the constipation and diarrhea groups, and it was more concentrated in the lower abdominal and the lower back regions from T10 to L3. Compared with the indexes before EA, in the normal +2 mA group and the normal +4 mA group, the areas under the curve and the average amplitude of the distal colon peristalsis were higher during EA delivery (P<0.01, P<0.05), showing a stimulatory immediate effect; and the post-effect was obtained after EA at 2 mA. Whereas, these two indexes were declined during EA in the rats of the normal +6 mA group (P<0.001), showing an inhibitory immediate effect. After many interventions with EA, when compared with those before EA, the above two indexes rose in the constipation +2 mA group (P<0.05, P<0.01), and they were dropped in the diarrhea +6 mA group (P<0.01, P<0.05). The area under the curve of the colon peristalsis in the constipation +2 mA group was higher than that of the constipation group (P<0.001), and that in the diarrhea +6 mA group was lower compared with that in the diarrhea group (P<0.001). The stimulatory effect of EA on colon motility in the constipation +2 mA group was stronger than that of the normal + 2 mA group (P<0.05), and its inhibitory effect was not different statistically in comparison between the normal +6 mA group and the diarrhea +6 mA group (P>0.05). In ENS of the distal colon, after EA at 2 mA, the proportion of VAChT-positive neurons was higher than that of the activated nNOS-positive neurons (P<0.001); and after EA at 6 mA, the activated nNOS-positive neurons were dominant (P<0.001).
CONCLUSION
In the functional constipation and diarrhea rat models, the sensitization areas on the body surface are centralized in the lower abdominal and the lower back regions of T10 to L3. Electroacupuncture at "Tianshu" (ST25) has a bidirectional regulatory effect on distal colon motility, and this effect is coordinated with the intensity of electroacupuncture, and may be mediated by ENS neurons of different subtypes.
Animals
;
Electroacupuncture
;
Male
;
Rats
;
Colon/innervation*
;
Acupuncture Points
;
Rats, Sprague-Dawley
;
Constipation/physiopathology*
;
Gastrointestinal Motility
;
Humans
;
Diarrhea/physiopathology*
4.Electroacupuncture Promotes Gastric Motility by Suppressing Pyroptosis via NLRP3/Caspase-1/GSDMD Signaling Pathway in Diabetic Gastroparesis Rats.
Hao HUANG ; Yan PENG ; Le XIAO ; Jing WANG ; Yu-Hong XIN ; Tian-Hua ZHANG ; Xiao-Yu LI ; Xing WEI
Chinese journal of integrative medicine 2025;31(5):448-457
OBJECTIVE:
To investigate the mechanism of electroacupuncture (EA) in treating diabetic gastroparesis (DGP) by inhibiting the activation of Nod-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome and pyroptosis mediated via NLRP3/cysteinyl aspartate specific proteinase-1 (caspase-1)/gasdermin D (GSDMD) signaling pathway.
METHODS:
Forty Sprague-Dawley rats were randomly divided into 4 groups including the control, DGP model, EA, and MCC950 groups. The DGP model was established by a one-time high-dose intraperitoneal injection of 2% streptozotocin and a high-glucose and high-fat diet for 8 weeks. EA intervention was conducted at Zusanli (ST 36), Liangmen (ST 21) and Sanyinjiao (SP 6) with sparse-dense wave for 15 min, and was administered for 3 courses of 5 days. After intervention, the blood glucose, urine glucose, gastric emptying, and intestinal propulsive rate were observed. Besides, HE staining was used to observe histopathological changes in gastric antrum tissues, and TUNEL staining was utilized to detect DNA damage. Protein expression levels of NLRP3, apoptosis-associated speck-like protein containing CARD (ASC), pro-caspase-1, caspase-1 and GSDMD were measured by Western blot. Immunofluorescence staining was employed to assess the activity of GSDMD-N. Lactate dehydrogenase (LDH) levels were detected by using a biochemical kit.
RESULTS:
DGP rats showed persistent hyperglycemia and a significant decrease in gastrointestinal motility (P<0.05 or P<0.01), accompanied by pathological damage in their gastric antrum tissues. Cellular DNA was obviously damaged, and the expressions of NLRP3, ASC, pro-caspase-1, caspase-1 and GSDMD proteins were significantly elevated, along with enhanced fluorescence signals of GSDMD-N and increased LDH release (P<0.01). EA mitigated hyperglycemia, improved gastrointestinal motility in DGP rats and alleviated their pathological injury (P<0.05). Furthermore, EA reduced cellular DNA damage, lowered the protein levels of NLRP3, ASC, pro-caspase-1, caspase-1 and GSDMD, suppressed GSDMD-N activity, and decreased LDH release (P<0.05 or P<0.01), demonstrating effects comparable to MCC950.
CONCLUSION
EA promotes gastrointestinal motility and repairs the pathological damage in DGP rats, and its mechanism may be related to the inhibition of NLRP3 inflammasome and pyroptosis mediated by NLRP3/caspase-1/GSDMD pathway.
Animals
;
Electroacupuncture
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Pyroptosis
;
Rats, Sprague-Dawley
;
Caspase 1/metabolism*
;
Gastroparesis/physiopathology*
;
Signal Transduction
;
Male
;
Diabetes Mellitus, Experimental/physiopathology*
;
Phosphate-Binding Proteins/metabolism*
;
Gastrointestinal Motility
;
Rats
;
Intracellular Signaling Peptides and Proteins/metabolism*
;
Diabetes Complications/physiopathology*
;
Gasdermins
5.A spinal neural circuit for electroacupuncture that regulates gastric functional disorders.
Meng-Ting ZHANG ; Yi-Feng LIANG ; Qian DAI ; He-Ren GAO ; Hao WANG ; Li CHEN ; Shun HUANG ; Xi-Yang WANG ; Guo-Ming SHEN
Journal of Integrative Medicine 2025;23(1):56-65
OBJECTIVE:
Acupuncture therapies are known for their effectiveness in treating a variety of gastric diseases, although the mechanisms underlying these effects are not fully understood. This study tested the effectiveness of electroacupuncture (EA) at acupoints Zhongwan (RN12) and Weishu (BL21) for managing gastric motility disorder (GMD) and investigated the underlying mechanisms involved.
METHODS:
A GMD model was used to evaluate the impact of EA on various aspects of gastric function including the amplitude of gastric motility, electrogastrogram, food intake, and the rate of gastric emptying. Immunofluorescence techniques were used to explore the activation of spinal neurons by EA, specifically examining the presence of cholera toxin B subunit (CTB)-positive neurons and fibers emanating from acupoints RN12 and BL21. The stimulation of γ-aminobutyric acid (GABA)-ergic neurons in the spinal dorsal horn, the inhibition of sympathetic preganglionic neurons in the spinal lateral horn, and their collective effects on the activity of sympathetic nerves were examined.
RESULTS:
EA at RN12 and BL21 significantly improved gastric motility compromised by GMD. Notably, EA activated spinal neurons, with CTB-positive neurons and fibers from RN12 and BL21 being detectable in both the dorsal root ganglia and the spinal dorsal horn. Further analysis revealed that EA at these acupoints not only stimulated GABAergic neurons in the spinal dorsal horn but also suppressed sympathetic preganglionic neurons in the spinal lateral horn, effectively reducing excessive activity of sympathetic nerves triggered by GMD.
CONCLUSION
EA treatment at RN12 and BL21 effectively enhances gastric motility in a GMD model. The therapeutic efficacy of this approach is attributed to the activation of spinal neurons and the modulation of the spinal GABAergic-sympathetic pathway, providing a neurobiological foundation for the role of acupuncture in treating gastric disorders. Please cite this article as: Zhang MT, Liang YF, Dai Q, Gao HR, Wang H, Chen L, Huang S, Wang XY, Shen GM. A spinal neural circuit for electroacupuncture that regulates gastric functional disorders. J Integr Med. 2025; 23(1): 56-65.
Electroacupuncture
;
Animals
;
Male
;
Acupuncture Points
;
Stomach Diseases/physiopathology*
;
Rats, Sprague-Dawley
;
Gastrointestinal Motility
;
Rats
;
Gastric Emptying
;
Neurons
;
Spinal Cord
;
Stomach/physiopathology*
6.Electroacupuncture at ST36 improves gastrointestinal motility disorders by promoting enteric nervous system regeneration through GDNF/Ret signaling in diabetic mice.
Jin-Lu GUO ; Shi LIU ; Sheng-Jie DING ; Xin YANG ; Fan DU
Journal of Integrative Medicine 2025;23(5):548-559
OBJECTIVE:
Diabetes-induced gastrointestinal (GI) motility disorders are increasingly prevalent. Damage to the enteric nervous system (ENS), composed primarily of enteric neurons and glial cells, is an essential mechanism involved in these disorders. Although electroacupuncture (EA) has shown the potential to mitigate enteric neuronal loss, its mechanism is not fully understood. Additionally, the effects of EA on enteric glial cells have not been investigated. Enteric neural precursor cells (ENPCs) contribute to the structural and functional integrity of the ENS, yet whether EA enhances their differentiation into enteric neurons and glial cells remains unexplored. This study investigates whether EA promotes ENS repair through enhancing ENPC-derived neurogenesis and gliogenesis and elucidates the potential molecular mechanisms involved.
METHODS:
Transgenic mice were used to trace Nestin+/nerve growth factor receptor (Ngfr)+ ENPCs labeled with green fluorescent protein (GFP) in vivo. Mice were randomly divided into four groups: control, diabetes mellitus (DM), DM + sham EA, and DM + EA. The effects of EA on diabetic mice were evaluated by GI motility, ENS structure, and ENPC differentiation. Glial cell line-derived neurotrophic factor (GDNF)/Ret signaling was detected to clarify the underlying molecular mechanisms.
RESULTS:
EA alleviated diabetes-induced GI motility disorders, as indicated by reduced whole gut transit time, shortened colonic bead expulsion time, and enhanced smooth muscle contractility. Furthermore, EA attenuated diabetes-induced losses of enteric neurons and glial cells, thereby restoring ENS integrity. Notably, EA reversed the diabetes-induced decrease in ENPCs and significantly increased the absolute number and the proportion of ENPC-derived enteric neurons. However, immunofluorescence analyses revealed no colocalization between EA-induced glial fibrillary acidic protein+ glial cells and GFP-labeled ENPCs. Mechanistically, GDNF/Ret signaling was elevated in intestinal tissues and upregulated in ENPCs in EA-treated diabetic mice.
CONCLUSION
EA facilitates ENS repair by promoting Nestin+/Ngfr+ ENPC differentiation into enteric neurons via upregulation of GDNF/Ret signaling, and driving enteric gliogenesis from non-Nestin+/Ngfr+ ENPCs. These findings highlight EA's role in ameliorating diabetes-induced GI dysmotility through ENPC-derived ENS restoration. Please cite this article as: Guo JL, Liu S, Ding SJ, Yang X, Du F. Electroacupuncture at ST36 improves gastrointestinal motility disorders by promoting enteric nervous system regeneration through GDNF/Ret signaling in diabetic mice. J Integr Med. 2025; 23(5):548-559.
Animals
;
Electroacupuncture
;
Enteric Nervous System/physiology*
;
Gastrointestinal Motility/physiology*
;
Glial Cell Line-Derived Neurotrophic Factor/metabolism*
;
Diabetes Mellitus, Experimental/therapy*
;
Signal Transduction
;
Mice
;
Gastrointestinal Diseases/physiopathology*
;
Proto-Oncogene Proteins c-ret/metabolism*
;
Mice, Transgenic
;
Male
;
Nerve Regeneration
;
Neural Stem Cells
;
Mice, Inbred C57BL
;
Acupuncture Points
7.Advances in colonic manometry in adults with colonic motility disorders.
Zhao ZHANG ; Chen Meng JIAO ; Ming Sen LI ; Jia Qi KANG ; Chen XU ; Yu Wei LI ; Xi Peng ZHANG
Chinese Journal of Gastrointestinal Surgery 2023;26(6):614-617
In recent years, colonic manometry has been gradually introduced into clinical practice. It helps clinicians to gain a better understanding of the physiology and pathophysiology of colonic contractile activity in healthy adults and patients with colonic dysfunction. More and more patterns of colonic motility are being discovered with the help of colonic manometry. However, the clinical significance of these findings still needs to be further investigated. This review enhances our understanding of colonic motility and the current state of development and application of colonic manometry, as well as the limitations, future directions and potential of the technique in assessing the impact of treatment on colonic motility patterns, by analyzing and summarizing the literature related to colonic manometry.
Humans
;
Adult
;
Gastrointestinal Motility/physiology*
;
Colon/physiology*
;
Colonic Diseases
;
Manometry/methods*
;
Clinical Relevance
;
Constipation
9.Guijiajiao (Colla Carapacis et Plastri, CCP) prevents male infertility via gut microbiota modulation.
Wen SHENG ; Wenjing XU ; Jin DING ; Baowei LU ; Lumei LIU ; Qinghu HE ; Qing ZHOU
Chinese Journal of Natural Medicines (English Ed.) 2023;21(6):403-410
Male infertility is a significant cause of psychosocial and marital distress in approximately 50% of couples who are unable to conceive, with male factors being the underlying cause. Guijiajiao (Colla Carapacis et Plastri, CCP) is a Traditional Chinese Medicine commonly used to treat male infertility. The present study aimed to investigate the potential mechanisms underlying the preventive effects of CCP on male infertility. An infertile male rat model was established using cyclophosphamide (CTX), and CCP was administered for both treatment and prevention. Fecal microbiota transplantation (FMT) was also performed to explore the role of gut microbiota in the CCP-mediated prevention of male infertility in rats. Sperm motility and concentration were determined using a semi-automatic sperm classification analyzer. Subsequently, histopathological analysis using HE staining was performed to examine the changes in the small intestine and testis. Moreover, the serum levels of lipopolysaccharide (LPS) and testosterone were measured by ELISA. In addition, immunohistochemistry was conducted to detect CD3 expression in the small intestine, while RT-qPCR was employed to assess the expressions of interleukin-1 beta (IL-1β), cluster of differentiation 3 (CD3), Monocyte chemoattractant protein-1 (MCP-1), and C-X-C motif chemokine ligand 10 (CXCL-10) in the small intestine and epididymis. Finally, gut microbiota was analyzed by 16S rRNA sequencing. CCP improved sperm motility, number, and concentration in CTX-induced infertile male rats. CCP increased the serum testosterone level, inhibited the immune cell infiltration of the intestinal lamina propria, and promoted the aggregation of CD3+ T cells in CTX-induced male infertility rats. CCP also inhibited the expressions of MCP-1, CXCL-10, and IL-1β in the epididymis of male infertility rats. At the genus level, CTX led to a reduction in the abundance of Lactobacillus, Clostridia_UCG.014, and Romboutsia in the intestinal tract of rats. In contrast, CCP decreased the abundance of Ruminococcus and increased the abundance of Romboutsia in infertile male rats. Additionally, FMT experiments proved that the gut microbiota of CCP-treated rats facilitated testicular tissue recovery and spermatogenesis while also reducing the serum LPS level in infertile male rats. CCP improves the spermatogenic ability of infertile male rats by restoring gut microbiota diversity and inhibiting epididymal inflammation.
Humans
;
Rats
;
Male
;
Animals
;
Gastrointestinal Microbiome
;
Lipopolysaccharides/pharmacology*
;
RNA, Ribosomal, 16S
;
Semen
;
Sperm Motility
;
Infertility, Male/prevention & control*
;
Testosterone
10.Chinese surgical diagnosis and treatment consensus on slow transit constipation (2023 edition).
Chinese Journal of Gastrointestinal Surgery 2023;26(12):1112-1121
In recent years, advancements have been made in both basic and surgical research of slow-transit constipation (STC). However, compelling references for surgeons in the clinical practice of STC have been lacking, particularly on preoperative evaluation and the choice of surgical procedures. In order to further standardize the diagnosis, assessment and surgical management of STC, Chinese Medical Doctor Association Anorectal Doctor Branch and its Functional Diseases Committee selected relevant experts in the field of STC surgery in China to form the Editorial and Review Committee of the Expert Consensus on Diagnosis, Evaluation and Surgical Management of STC in China. By meticulously reviewing relevant literature from both domestic and international sources and integrating the clinical expertise of the panel of experts, the committee has formulated 20 recommendations. These recommendations aim to establish standardized processes for surgical diagnosis and treatment of STC, ultimately elevating the overall diagnostic and therapeutic standards for STC across China.
Humans
;
Consensus
;
Gastrointestinal Transit
;
Constipation/surgery*
;
Colectomy
;
China

Result Analysis
Print
Save
E-mail