1.Gut microbiota and Parkinson's disease.
Lin WANG ; Ying CUI ; Bingyu HAN ; Yitong DU ; Kenish Sirajbhai SALEWALA ; Shiya WANG ; Wenlu ZHAO ; Hongxin ZHANG ; Sichen WANG ; Xinran XU ; Jianpeng MA ; Yan ZHU ; Houzhen TUO
Chinese Medical Journal 2025;138(3):289-297
Emerging evidence suggests that dysbiosis of the gut microbiota is associated with the pathogenesis of Parkinson's disease (PD), a prevalent neurodegenerative disorder. The microbiota-gut-brain axis plays a crucial role in the development and progression of PD, and numerous studies have demonstrated the potential therapeutic benefits of modulations in the intestinal microbiota. This review provides insights into the characterization of the gut microbiota in patients with PD and highlights associations with clinical symptoms and underlying mechanisms. The discussion underscores the increased influence of the gut microbiota in the pathogenesis of PD. While the relationship is not fully elucidated, existing research demonstrates a strong correlation between changes in the composition of gut microbiota and disease development, and further investigation is warranted to explain the specific underlying mechanisms.
Humans
;
Parkinson Disease/microbiology*
;
Gastrointestinal Microbiome/physiology*
;
Dysbiosis/microbiology*
2.Effects of psychological stress on inflammatory bowel disease via affecting the microbiota-gut-brain axis.
Yuhan CHEN ; Xiaofen CHEN ; Suqin LIN ; Shengjun HUANG ; Lijuan LI ; Mingzhi HONG ; Jianzhou LI ; Lili MA ; Juan MA
Chinese Medical Journal 2025;138(6):664-677
Inflammatory bowel disease (IBD) is an idiopathic intestinal inflammatory condition with chronic and relapsing manifestations and is characterized by a disturbance in the interplay between the intestinal microbiota, the gut, and the brain. The microbiota-gut-brain axis involves interactions among the nervous system, the neuroendocrine system, the gut microbiota, and the host immune system. Increasing published data indicate that psychological stress exacerbates the severity of IBD due to its negative effects on the microbiota-gut-brain axis, including alterations in the stress response of the hypothalamic-pituitary-adrenal (HPA) axis, the balance between the sympathetic nervous system and vagus nerves, the homeostasis of the intestinal flora and metabolites, and normal intestinal immunity and permeability. Although the current evidence is insufficient, psychotropic agents, psychotherapies, and interventions targeting the microbiota-gut-brain axis show the potential to improve symptoms and quality of life in IBD patients. Therefore, further studies that translate recent findings into therapeutic approaches that improve both physical and psychological well-being are needed.
Humans
;
Inflammatory Bowel Diseases/metabolism*
;
Stress, Psychological/microbiology*
;
Gastrointestinal Microbiome/physiology*
;
Brain/metabolism*
;
Hypothalamo-Hypophyseal System
;
Pituitary-Adrenal System
;
Animals
3.Intestinal metabolites in colitis-associated carcinogenesis: Building a bridge between host and microbiome.
Yating FAN ; Yang LI ; Xiangshuai GU ; Na CHEN ; Ye CHEN ; Chao FANG ; Ziqiang WANG ; Yuan YIN ; Hongxin DENG ; Lei DAI
Chinese Medical Journal 2025;138(16):1961-1972
Microbial-derived metabolites are important mediators of host-microbial interactions. In recent years, the role of intestinal microbial metabolites in colorectal cancer has attracted considerable attention. These metabolites, which can be derived from bacterial metabolism of dietary substrates, modification of host molecules such as bile acids, or directly from bacteria, strongly influence the progression of colitis-associated cancer (CAC) by regulating inflammation and immune response. Here, we review how microbiome metabolites short-chain fatty acids (SCFAs), secondary bile acids, polyamines, microbial tryptophan metabolites, and polyphenols are involved in the tumorigenesis and development of CAC through inflammation and immunity. Given the heated debate on the metabolites of microbiota in maintaining gut homeostasis, serving as tumor molecular markers, and affecting the efficacy of immune checkpoint inhibitors in recent years, strategies for the prevention and treatment of CAC by targeting intestinal microbial metabolites are also discussed in this review.
Humans
;
Gastrointestinal Microbiome/physiology*
;
Animals
;
Carcinogenesis/metabolism*
;
Colitis-Associated Neoplasms/microbiology*
;
Fatty Acids, Volatile/metabolism*
;
Bile Acids and Salts/metabolism*
;
Colitis/microbiology*
4.Intestinal dysbiosis and colorectal cancer.
Ziran KANG ; Shanshan JIANG ; Jing-Yuan FANG ; Huimin CHEN
Chinese Medical Journal 2025;138(11):1266-1287
Colorectal cancer (CRC) is one of the leading causes of cancer-related morbidity and mortality worldwide, highlighting the urgent need for novel preventive and therapeutic strategies. Emerging research highlights the crucial role of the gut microbiota, including bacteria, fungi, viruses, and their metabolites, in the pathogenesis of CRC. Dysbiosis, characterized by an imbalance in microbial composition, contributes to tumorigenesis through immune modulation, metabolic reprogramming, and genotoxicity. Specific bacterial species, such as Fusobacterium nucleatum and enterotoxigenic Bacteroides fragilis , along with fungal agents like Candida species, have been implicated in CRC progression. Moreover, viral factors, including Epstein-Barr virus and human cytomegalovirus, are increasingly recognized for their roles in promoting inflammation and immune evasion. This review synthesizes the latest evidence on host-microbiome interactions in CRC, emphasizing microbial metabolites, such as short-chain fatty acids and bile acids, which may act as both risk factors and therapeutic agents. We further discuss the latest advances in microbiota-targeted clinical applications, including biomarker-assisted diagnosis, next-generation probiotics, and microbiome-based interventions. A deeper understanding of the role of gut microbiome in CRC pathogenesis could pave the way for diagnostic, preventive, and personalized therapeutic strategies.
Humans
;
Dysbiosis/microbiology*
;
Colorectal Neoplasms/metabolism*
;
Gastrointestinal Microbiome/physiology*
;
Animals
5.Gut: The gate and key to brain.
Chinese Medical Journal 2025;138(18):2207-2219
Brain science is the frontier of modern science, and new advances have been made in brain-like designs and brain-computer interfaces to simulate or develop brain functions. However, given that the brain is hermetically sealed within the skull, exploration and deciphering of the brain structure and functions are limited. Growing evidence suggests that the gut is not just a digestive organ. It not only provides essential nutrients and electrolytes for brain neurodevelopment and the maintenance of brain function, but it also transmits external environmental and intestinal wall signals from the intestinal lumen to the central nervous system through multiple pathways to regulate brain activity, function, and structure. A variety of gut-brain interaction pathways have been identified, including neural pathways, neuroimmune signaling, endocrine pathways, and biochemical messengers produced by gut microbes. Gut microbes interact with food and the gut to modulate gut-brain communication. The gut's important role and potential in neurodevelopment, maintenance of normal function, and disease development make it an increasingly important area of research in brain science and neuropsychiatric disorders. The gut's unique role in brain functions and its accessibility for research (compared to direct brain studies) establish it as a critical gate to understanding the mysteries of brain science. Crucially, intestinal nutrients and microbes provide two unique keys to unlock this gate-enabling neural regulation and novel treatments for neuropsychiatric diseases.
Humans
;
Brain/physiology*
;
Animals
;
Gastrointestinal Microbiome/physiology*
;
Gastrointestinal Tract/microbiology*
6.Research advance on the role of gut microbiota and its metabolites in juvenile idiopathic arthritis.
Ao-Hui PENG ; You-Jia CHEN ; Jin-Xuan GU ; Zhi-Gang JIN ; Xu-Bo QIAN
Acta Physiologica Sinica 2025;77(3):587-601
Juvenile idiopathic arthritis (JIA) is the most common condition of chronic rheumatic disease in children. JIA is an autoimmune or autoinflammatory disease, with unclear mechanism and limited treatment efficacy. Recent studies have found a number of alterations in gut microbiota and its metabolites in children with JIA, which are related to the development and progression of JIA. This review focuses on the influence of the gut microbiota and its metabolites on immune function and the intestinal mucosal barrier and discuss the key role of the gut-joint axis in the pathogenesis of JIA and emerging treatment methods based on gut microbiota and its metabolites. This review could help elucidate the pathogenesis of JIA and identify the potential therapeutic targets for the prevention and treatment of JIA.
Humans
;
Arthritis, Juvenile/physiopathology*
;
Gastrointestinal Microbiome/physiology*
;
Child
;
Intestinal Mucosa
7.Research progress on the comorbidity mechanism of sarcopenia and obesity in the aging population.
Hao-Dong TIAN ; Yu-Kun LU ; Li HUANG ; Hao-Wei LIU ; Hang-Lin YU ; Jin-Long WU ; Han-Sen LI ; Li PENG
Acta Physiologica Sinica 2025;77(5):905-924
The increasing prevalence of aging has led to a rising incidence of comorbidity of sarcopenia and obesity, posing significant burdens on socioeconomic and public health. Current research has systematically explored the pathogenesis of each condition; however, the mechanisms underlying their comorbidity remain unclear. This study reviews the current literature on sarcopenia and obesity in the aging population, focusing on their shared biological mechanisms, which include loss of autophagy, abnormal macrophage function, mitochondrial dysfunction, and reduced sex hormone secretion. It also identifies metabolic mechanisms such as insulin resistance, vitamin D metabolism abnormalities, dysregulation of iron metabolism, decreased levels of nicotinamide adenine dinucleotide, and gut microbiota imbalances. Additionally, this study also explores the important role of genetic factors, such as alleles and microRNAs, in the co-occurrence of sarcopenia and obesity. A better understanding of these mechanisms is vital for developing clinical interventions and preventive strategies.
Humans
;
Sarcopenia/physiopathology*
;
Obesity/physiopathology*
;
Aging/physiology*
;
Autophagy/physiology*
;
Insulin Resistance
;
Comorbidity
;
Vitamin D/metabolism*
;
Gonadal Steroid Hormones/metabolism*
;
Gastrointestinal Microbiome
;
Mitochondria
;
MicroRNAs
8.Tanreqing Capsules protect lung and gut of mice infected with influenza virus via "lung-gut axis".
Nai-Fan DUAN ; Yuan-Yuan YU ; Yu-Rong HE ; Feng CHEN ; Lin-Qiong ZHOU ; Ya-Lan LI ; Shi-Qi SUN ; Yan XUE ; Xing ZHANG ; Gui-Hua XU ; Yue-Juan ZHENG ; Wei ZHANG
China Journal of Chinese Materia Medica 2025;50(8):2270-2281
This study aims to explore the mechanism of lung and gut protection by Tanreqing Capsules on the mice infected with influenza virus based on "the lung-gut axis". A total of 110 C57BL/6J mice were randomized into control group, model group, oseltamivir group, and low-and high-dose Tanreqing Capsules groups. Ten mice in each group underwent body weight protection experiments, and the remaining 12 mice underwent experiments for mechanism exploration. Mice were infected with influenza virus A/Puerto Rico/08/1934(PR8) via nasal inhalation for the modeling. The lung tissue was collected on day 3 after gavage, and the lung tissue, colon tissue, and feces were collected on day 7 after gavage for subsequent testing. The results showed that Tanreqing Capsules alleviated the body weight reduction and increased the survival rate caused by PR8 infection. Compared with model group, Tanreqing Capsules can alleviate the lung injury by reducing the lung index, alleviating inflammation and edema in the lung tissue, down-regulating viral gene expression at the late stage of infection, reducing the percentage of neutrophils, and increasing the percentage of T cells. Tanreqing Capsules relieved the gut injury by restoring the colon length, increasing intestinal lumen mucin secretion, alleviating intestinal inflammation, and reducing goblet cell destruction. The gut microbiota analysis showed that Tanreqing Capsules increased species diversity compared with model group. At the phylum level, Tanreqing Capsules significantly increased the abundance of Firmicutes and Actinobacteria, while reducing the abundance of Bacteroidota and Proteobacteria to maintain gut microbiota balance. At the genus level, Tanreqing Capsules significantly increased the abundance of unclassified_f_Lachnospiraceae while reducing the abundance of Bacteroides, Eubacterium, and Phocaeicola to maintain gut microbiota balance. In conclusion, Tanreqing Capsules can alleviate mouse lung and gut injury caused by influenza virus infection and restore the balance of gut microbiota. Treating influenza from the lung and gut can provide new ideas for clinical practice.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Lung/metabolism*
;
Mice, Inbred C57BL
;
Capsules
;
Orthomyxoviridae Infections/virology*
;
Gastrointestinal Microbiome/drug effects*
;
Male
;
Humans
;
Female
;
Influenza A virus/physiology*
;
Influenza, Human/virology*
9.Research progress on the relationship between gut microbiota and childhood bronchial asthma.
Lei YU ; Mao-Lan WU ; Xiang-Rong ZHENG
Chinese Journal of Contemporary Pediatrics 2025;27(5):623-628
Bronchial asthma (asthma) is a complex inflammatory airway disease affecting approximately 100 million children worldwide, imposing a heavy burden on society and families. Studies have shown that the gut microbiota plays a significant role in the occurrence and development of childhood asthma. This paper reviews the research progress on the relationship between gut microbiota and childhood asthma. By elucidating the composition, function, and relationship with the host of gut microbiota, the impact of changes in its composition and function on the development of asthma is revealed. Furthermore, the potential value and application prospects of modulating gut microbiota as a new strategy for asthma treatment are discussed, providing a theoretical reference for in-depth research on the relationship between gut microbiota and the onset of childhood asthma and the development of new therapeutic approaches.
Humans
;
Asthma/etiology*
;
Gastrointestinal Microbiome/physiology*
;
Child
10.The microbiota-gut-brain axis in childhood attention-deficit/hyperactivity disorder: mechanisms and therapeutic advances.
Ying-Lun YUAN ; Yong-Mei LAN ; Lin-Mei GUO
Chinese Journal of Contemporary Pediatrics 2025;27(11):1426-1432
Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder in children. Growing evidence links ADHD to gut microbiota dysbiosis, positioning the microbiota-gut-brain axis as a new focus of childhood ADHD research. This review systematically elucidates the association between gut dysbiosis and childhood ADHD and analyzes key mechanisms by which the microbiota-gut-brain axis regulates bidirectional gut-brain communication through multiple pathways. It highlights recent findings on microbiota-targeted strategies to improve ADHD symptoms and discusses therapeutic prospects, with the aim of exploring new avenues for early intervention and treatment in children with ADHD.
Humans
;
Attention Deficit Disorder with Hyperactivity/microbiology*
;
Gastrointestinal Microbiome/physiology*
;
Child
;
Brain/physiology*
;
Dysbiosis

Result Analysis
Print
Save
E-mail