1.Genetic and clinical analysis of a novel GLB1 gene variant in a Chinese patient with GM1-gangliosidosis.
Shuangxi CHENG ; Qingming WANG ; Aixin CHEN ; Lingfang ZHOU ; Xiaochun HONG ; Haiming YUAN
Chinese Journal of Medical Genetics 2022;39(5):537-541
OBJECTIVE:
To explore the genotype-phenotype correlation of a case with GM1-gangliosidosis caused by compound heterogenic variants in GLB1.
METHODS:
Genomic DNA was extracted from peripheral blood samples from the patient and her parents. Trio-based whole-exome sequencing (WES) was performed for the family and suspected mutation was verified by Sanger sequencing.
RESULTS:
The proband, a 2-year-3-month old Chinese girl, presented with psychomotor deterioration, absent speech, intellectual disabilities and behavior problem. Trio-based WES has identified compound heterozygosity for 2 variants in the GLB1 gene: NM_000404.2:c.1343A>T, p.Asp448Val and c.1064A>C, p.Gln355Pro (GRCh37/hg19),which was inherited from the mother and father, respectively. Homozygous or compound heterozygous pathogenic variants in GLB1, encoding β-galactosidase, are responsible for GM1-gangliosidosis,an autosomal recessive lysosomal storage disorder characterized by variable degrees of neurodegeneration and skeletal abnormalities. The p.Asp448Val variant has been classified as pathogenic for GM1 gangliosidosis in medical literatures for the reason that functional studies demonstrated that expression of the p.Asp448Val variant in COS-1 cells resulted in no detectable β-galactosidase activity compared to wild type GLB1. The p.Gln355Pro variant has not been reported in literatures or database. The variant is highly conserved residue (PM1), and was not found in either the Genome Aggregation Database or the 1000 Genomes Project (PM2) and was predicted to have a deleterious effect on the gene product by multiple in silico prediction tools (PP3). Next, the β-galactosidase activity of the patient's peripheral blood leukocytes was determined by fluorescent method. The result was 0.0 nmol/mg. It showed that the p.Gln355Pro variant also resulted in loss of β-galactosidase activity, thus the variant was classified into clinical pathogenic variant.
CONCLUSION
Our study expands the mutational spectrum of the GLB1 gene and provides genetic counseling for the family.
Asians/genetics*
;
China
;
Female
;
G(M1) Ganglioside
;
Gangliosidosis, GM1/genetics*
;
Humans
;
Mutation
;
beta-Galactosidase/genetics*
2.Identification and pathogenicity prediction of a novel GLB1 variant c.101T>C (p.Ile34Thr) in an infant with GM1 gangliosidosis.
Xue-Rong LAN ; Jian-Wu QIU ; Hua LI ; Xiang-Ran CAI ; Yuan-Zong SONG
Chinese Journal of Contemporary Pediatrics 2019;21(1):71-76
GM1 gangliosidosis is an autosomal recessive disorder caused by galactosidase beta1 (GLB1) gene variants which affect the activity of β-galactosidase (GLB). GLB dysfunction causes abnormalities in the degradation of GM1 and its accumulation in lysosome. This article reports the clinical and genetic features of a child with GM1 gangliosidosis. The girl, aged 2 years and 5 months, was referred to the hospital due to motor developmental regression for more than one year. Physical examination showed binocular deflection and horizontal nystagmus, but no abnormality was found on fundoscopy. The girl had increased muscular tone of the extremities, limitation of motion of the elbow, knee, and ankle joints, and hyperactive patellar tendon reflex. Blood biochemical examination showed a significant increase in aspartate aminotransferase. The 24-hour electroencephalographic monitoring detected frequent seizure attacks and diffuse θ wave activity, especially in the right hemisphere. Head magnetic resonance imaging showed thinner white matter in the periventricular region and diffuse high T2WI signal with unclear boundary. Three-dimensional reconstruction of white matter fiber tracts by diffusion tensor imaging showed smaller and thinner white matter fiber tracts, especially in the right hemisphere. Genetic analysis showed that the girl had compound heterozygous mutations of c.446C>T (p.Ser149Phe) and c.101T>C (p.Ile34Thr) in the GLB1 gene from her parents, among which c.101T>C (p.Ile34Thr) had not been reported in the literatures. The girl was finally diagnosed with GM1 gangliosidosis. Her conditions were not improved after antiepileptic treatment and rehabilitation training for 2 months.
Diffusion Tensor Imaging
;
Female
;
Gangliosidosis, GM1
;
genetics
;
Humans
;
Infant
;
Mutation
;
Virulence
;
beta-Galactosidase
;
genetics
3.Novel mutations of GLB1 gene identified in a Chinese pedigree affected with GM1 gangliosidosis.
Min GAO ; Ruifeng JIN ; Kaihui ZHANG ; Zhiyi LI ; Zhongtao GAI ; Yi LIU
Chinese Journal of Medical Genetics 2019;36(2):128-131
OBJECTIVE:
To explore the genetic cause for a child with growth retardation by next generation sequencing (NGS).
METHODS:
Clinical data of the patient was collected. Peripheral venous blood samples were taken from the neonate and his parents. Targeted capturing and NGS were carried out to detect mutations of genes associated with inborn errors of metabolism. Suspected mutations were validated by Sanger sequencing.
RESULTS:
The 15-month-old female patient was admitted to hospital for growth retardation for 4 months. Hypomyelination was found upon cranium MRI. Genetic testing revealed two novel insertional mutations in the GLB1 gene in the patient, namely c.2006-2007insT and c.475-476 insGGTCC.
CONCLUSION
The c.2006-2007insT and c.475-476 insGGTCC mutations of the GLB1 gene probably underlie the GM1 gangliosidosis resulting in the growth retardation in the child.
Female
;
Gangliosidosis, GM1
;
genetics
;
Humans
;
Infant
;
Infant, Newborn
;
Mutation
;
Pedigree
;
beta-Galactosidase
;
genetics