1.GM2 Gangliosidosis II.
Seong Yon CHOI ; Jae Hyun PARK ; Joon Soo LEE ; Chang Jun COE ; Si Hoon HAN ; Eun Ha LEE
Journal of the Korean Child Neurology Society 1999;7(2):244-249
GM2 gangliosidosis II(Sandhoff disease) is a lysosomal storage disease due to deficiency of beta-hexosaminidase activity, transmitted by mode of autosomal recessive. Clinical features are so variable, ranging from infantile onset resulting death before 4 years, to subacute or chronic forms with more slowly progressive neurologic condition. We experienced a case of GM2 gangliosidosis II in a 14 months old male who had developmental deterioration and seizures, so we report and review the related literatures.
beta-N-Acetylhexosaminidases
;
Gangliosidoses, GM2*
;
Hexosaminidases
;
Humans
;
Infant
;
Lysosomal Storage Diseases
;
Male
;
Seizures
2.Sphingolipidoses.
Hanyang Medical Reviews 2005;25(3):19-26
Sphingolipidoses are a subgroup of lysosomal storage disorders. They are characterized by relentless progressive storage in affected organs and concomitant functional impairments. No overall screening procedure for these disorders is available. Their course and appearance, however, are usually characteristic and, together with relevant technical procedures such as magnetic resonance imaging (MRI), clinical neurophysiology, ophthalmologic examination, etc., a provisional diagnosis can be made, after which enzymatic diagnosis can close the gap in the diagnostic process. Subgroups of sphingolipidoses are grouped together, such as disorders with prominent hepatosplenomegaly (Niemann-Pick A, B and Gaucher disease) and disorders with central and peripheral demyelination (metachromic leukodystrophy and Krabbe disease). Farber disease and Fabry disease are unique in themselves. The last decade has seen hopeful progress in therapeutic strategies, especially for Gaucher disease. Therefore, emphasis of this review has been placed on these new developments.
Demyelinating Diseases
;
Diagnosis
;
Fabry Disease
;
Farber Lipogranulomatosis
;
Gangliosidoses, GM2
;
Gangliosidosis, GM1
;
Gaucher Disease
;
Hope
;
Leukodystrophy, Globoid Cell
;
Magnetic Resonance Imaging
;
Mass Screening
;
Neurophysiology
;
Niemann-Pick Diseases
;
Sphingolipidoses*
3.Studies on the molecular mechanism of GM(2) gangliosidosis.
Chinese Journal of Medical Genetics 2003;20(2):103-106
OBJECTIVETo study the molecular mechanism of GM(2) gangliosidosis.
METHODSThe skin fibroblasts from 4 patients with GM(2) gangliosidosis were subjected to culture. Enzyme activities assay, Western blot and immunocytochemical analysis were performed using the cultured fibroblasts.
RESULTSThe hexosaminidase (Hex) activities of 4 patients with GM(2) gangliosidosis were significantly decreased. The activities were 12% 3% 15% and 6% of control values, respectively. Western blot analysis indicated that the amount of Hex mature alpha- and beta- subunits (alpha m, beta m) was decreased in cells from patients 2 and 3, but only decreased alpha m was found in patient 1 and both alpha m and beta m were normal in cells from patient 4. Immunocytochemical analysis revealed the accumulated GM(2) ganglioside in cells from patients 1-4.
CONCLUSIONThe pathogenesis of GM(2) gangliosidosis was associated with deficiency of Hex alpha m and beta m and GM(2) activator caused by HEXA, HEXB and GM(2)A gene mutations.
Adult ; Blotting, Western ; Cells, Cultured ; Child, Preschool ; Female ; Gangliosidoses, GM2 ; enzymology ; pathology ; Hexosaminidase A ; Hexosaminidase B ; Humans ; Infant ; Male ; Protein Subunits ; metabolism ; beta-N-Acetylhexosaminidases ; metabolism
4.A novel frameshift mutation of HEXA gene in the first family with classical infantile Tay-Sachs disease in Thailand
Boonchai Boonyawat ; Tim Phetthong ; Charcrin Nabangchang ; Piradee Suwanpakdee
Neurology Asia 2016;21(3):281-285
Tay-Sachs disease (TSD) is an autosomal recessive neurodegenerative disorder caused by mutations in
the HEXA gene resulting in a deficiency of β-hexosaminidase A (HEX A) enzyme. To our knowledge,
TSD has never been reported in Thai population. We describe the first case of classic infantile TSD in
a 2-year-old Thai boy who presented with first episode of seizure and neuroregression since 9 months
of age. Hyperacusis, progressive macrocephaly and macular cherry red spots were also detected during
examination. Brain MRI revealed hyperintensity in the basal ganglion on T1-weighted and partial
corpus callosum agenesis. Measurement of β-hexosaminidase activity in the patient leukocytes showed
low total β-hexosaminidase (62.6 normal 801+/-190 nmol/mg protein/hr) and low %HEX A (7.57
normal 55-72%HEX A) activity compatible with TSD. Mutation analysis of the HEXA gene revealed
compound heterozygous of a novel frameshift mutation (c.1207delG or p.E403SfsX20) in exon 11
which was inherited from the mother and a previously described missense mutation (c.1510C>T or
p.R504C) in exon 13 which was inherited from the father, respectively.
Conclusion. We report a clinical, biochemical and molecular analysis in the first case of genetically
confirmed classic infantile TSD in Thailand.
Tay-Sachs Disease
5.Progressive psychomotor regression for 2.5 years in a boy aged 5 years.
Mao-Qiang TIAN ; Xiao-Xi CHEN ; Lei LI ; Chang-Hui LANG ; Juan LI ; Jing CHEN ; Xiao-Hua YU ; Xiao-Mei SHU
Chinese Journal of Contemporary Pediatrics 2022;24(6):699-704
A boy, aged 5 years, attended the hospital due to progressive psychomotor regression for 2.5 years. Motor function regression was the main manifestation in the early stage, and brain MRI and whole-exome sequencing (WES) of the family showed no abnormalities. After the age of 4 years and 9 months, the boy developed cognitive function regression, and brain MRI showed cerebellar atrophy. The reanalysis of WES results revealed a compound heterozygous mutation, [NM_000520, c.784C>T(p.His262Tyr]), c.1412C>T(p.Pro471Leu)], in the HEXA gene. The enzyme activity detection showed a significant reduction in the level of β-hexosaminidase encoded by this gene. The boy was diagnosed with juvenile Tay-Sachs disease (TSD). TSD has strong clinical heterogeneity, and cerebellar atrophy may be an important clue for the diagnosis of juvenile TSD. The reanalysis of genetic data when appropriate based on disease evolution may improve the positive rate of WES.
Atrophy
;
Humans
;
Magnetic Resonance Imaging
;
Male
;
Mutation
;
Tay-Sachs Disease/genetics*
6.An Anesthetic Experience in a Patient with Tay-Sachs Disease : A case report.
Seong su KIM ; Suk ju CHO ; Hwa sung JUNG
Korean Journal of Anesthesiology 2007;52(1):107-110
Tay-Sachs Disease (TSD), the most common form of GM(2) gangliosidosis, is an autosomal recessive inborn lysosomal glycosphingolipid storage disease which is resulted from the mutations that affect the alpha-subunit locus on chromosome 15 and cause a severe deficiency of hexosaminidase A. It is characterized by normal motor development in the first few months of life, followed by progressive weakness and loss of motor skills beginning around 6 months of life. Neurodegeneration is relentless and manifested as relentless motor and mental deterioration, beginning with motor incoordination, mental obtundation leading to muscular flaccidity, blindness, and increasing dementia, with death occurring by the age of 4 or 5 years. We report a successful anesthetic management in a patient with Tay-Sachs Diseases for tracheostomy and feeding gastrostomy.
Ataxia
;
Blindness
;
Chromosomes, Human, Pair 15
;
Dementia
;
Gangliosidoses
;
Gastrostomy
;
Hexosaminidase A
;
Hexosaminidases
;
Humans
;
Motor Skills
;
Muscle Hypotonia
;
Tay-Sachs Disease*
;
Tracheostomy
7.Comparison of enzyme and DNA analysis in a Tay-Sachs disease carrier screening program.
Han Wook YOO ; Kenneth H ASTRIN ; Robert J DESNICK
Journal of Korean Medical Science 1993;8(1):84-91
Tay-Sachs disease (GM2 gangliosidosis, type 1; TSD) is an autosomal recessive GM2 gangliosidosis resulting from the deficient activity of the lysosomal hydrolase beta-hexosaminidase A (Hex A). With a carrier frequency estimated at 1 in 25, it is a common lysosomal disorder in the Ashkenazi Jewish population. Tay-Sachs disease has provided the prototype for the prevention of severe recessive genetic diseases. Molecular analysis of the Hex A gene (HEXA) of Ashkenazi Jewish individuals affected with Tay-Sachs disease revealed that three common mutations cause the infantile and adult onset forms of the disease; a four base insertion in exon 11, a splice junction mutation in intron 12 and a point mutation in exon 7 (G269S). A study was undertaken to determine whether mutation analysis would be useful in TSD screening programs in identifying carriers and clarifying the status of individuals whose enzyme assays are inconclusive. Ashkenazi Jewish individuals who had been diagnosed as carriers, inconclusives by enzyme assay and non-carriers with low normal enzyme levels in the Mount Sinai Tay-Sachs Disease Prevention Program were examined for the presence of the three mutations using polymerase chain reaction (PCR) and allele specific oligonucleotide (ASO) hybridization. The insertion mutation was present in 29 of 34 carriers and 2 of 36 inconclusive individuals, the splice junction mutation was found in 4 of 34 carriers and the G269S mutation was found in 1 of 34 carriers. Of the 313 non-carrier individuals with normal enzyme activity in the lower normal range, one was positive for the splice junction mutation.(ABSTRACT TRUNCATED AT 250 WORDS)
Base Sequence
;
*Clinical Enzyme Tests
;
DNA/*analysis
;
*Genetic Testing
;
*Heterozygote
;
Heterozygote Detection
;
Humans
;
Molecular Sequence Data
;
Mutation
;
Tay-Sachs Disease/*genetics
8.A Case of Tay-Sachs Disease in Korea Diagnosed by Enzyme Assay and DNA Analysis.
Hyun Seung JIN ; Jin Ho CHOI ; Han Wook YOO
Korean Journal of Pediatrics 2004;47(12):1360-1363
Tay-Sachs disease is an autosomal recessive, neurodegenerative disorder that results from excessive storage of the cell membrane glycolipid, and GM2 ganglioside within the lysosomes of cells. This disease is caused by deficiency of the isoenzyme beta-hexosaminidase A, produced in the endoplasmic reticulum. Patients with Tay-Sachs disease are characterized by normal motor development in the first few months of life, followed by progressive weakness and loss of motor skills beginning around 2 to 6 months of life. Neurodegeneration is relentless, with death occurring by the age of 4 or 5 years. Tay-Sachs disease could be diagnosed by hexosaminidase enzyme assay and DNA analysis of HEXA gene. However, specific treatment has not been developed. We report here on a case of Tay- Sachs disease in 18-month-old male who presented with delayed development and seizure. This patient showed hyperacusis and cherry red spot in macula on examination of the fundus. The hexosaminidase A activity was zero percent in the enzymatic assay and DNA analysis identified a mutation that glutamine is substituted by stop codon at position 390(Q390X). This patient is the first case of Tay-Sachs disease in Korea diagnosed by enzymatic assay and DNA analysis.
beta-N-Acetylhexosaminidases
;
Cell Membrane
;
Codon, Terminator
;
DNA*
;
Endoplasmic Reticulum
;
Enzyme Assays*
;
G(M2) Ganglioside
;
Glutamine
;
Hexosaminidase A
;
Hexosaminidases
;
Humans
;
Hyperacusis
;
Infant
;
Korea*
;
Lysosomes
;
Male
;
Motor Skills
;
Neurodegenerative Diseases
;
Prunus
;
Seizures
;
Tay-Sachs Disease*
9.An Infantile Case of Sandhoff Disease Presenting With Swallowing Difficulty.
Jae Gun MOON ; Min A SHIN ; Hannah PYO ; Seong Uk CHOI ; Hyun Kyung KIM
Annals of Rehabilitation Medicine 2017;41(5):892-896
Infants with Sandhoff disease typically appear normal until 3–6 months of age. As the disease progresses, they present with symptoms such as loss of motor skills, exaggerated startle response to loud noise, seizures, visual loss, and paralysis. We encountered a rare case of a 22-month-old girl with Sandhoff disease characterized by progressive motor weakness and dysphagia, who initially showed signs of aspiration at 20 months of age. The major problems related to dysphagia were oromotor dysfunction and abnormal feeding posture. Within 3 months of identification of difficulty in swallowing, the patient showed a significant decrease in food intake, with rapid deterioration of nutritional status. We report our case with a review of the literature.
Deglutition Disorders
;
Deglutition*
;
Eating
;
Female
;
Humans
;
Infant
;
Motor Skills
;
Noise
;
Nutritional Status
;
Paralysis
;
Posture
;
Reflex, Startle
;
Sandhoff Disease*
;
Seizures
10.Analysis of HEXB gene mutations in an infant with Sandhoff disease.
Ruohao WU ; Wenting TANG ; Kunyin QIU ; Yu LI ; Lirong LU ; Dongfang LI
Chinese Journal of Medical Genetics 2019;36(9):930-934
OBJECTIVE:
To detect potential mutations of HEXB gene in an infant with Sandhoff disease (SD).
METHODS:
Genomic DNA was extracted from peripheral blood sample of the infant. All coding exons (exons 1 to 14) and splicing sites of the HEXB gene were subjected to PCR amplification and direct sequencing.PubMed Protein BLAST system was employed to analyze cross-species conservation of the mutant amino acid. PubMed BLAST CD-search was performed to identify functional domains destroyed by thecandidate mutations. Impact of the mutations was analyzed with software including PolyPhen-2, Mutation Taster and SIFT. Whole-exome sequencing was carried out to identify additional mutations.
RESULTS:
The infant was found to carry compound heterozygous mutations c.1652G>A(p.Cys551Tyr) and c.1389C>G (p.Tyr463*) of the HEXB gene. The c.1389C>G (p.Tyr463*) mutation may lead to destruction of two functional domains in β subunit of the Hex protein. The c.1652G>A(p.Cys551Tyr) mutation, unreported previously,was predicted to be probably damaging by Bioinformatic analysis.
CONCLUSION
Compound heterozygous mutations c.1652G>A(p.Cys551Tyr) and c.1389C>G (p.Tyr463*) in the HEXB gene probably underlie the disease in this patient.
DNA Mutational Analysis
;
Exons
;
Heterozygote
;
Humans
;
Infant
;
Mutation
;
Polymerase Chain Reaction
;
Sandhoff Disease
;
genetics
;
beta-Hexosaminidase beta Chain
;
genetics