1.Effects of point-moxibustion with Zhuang medicinal thread on pain sensitization and FcεRI pathway in rats with postherpetic neuralgia.
Sitong XIAN ; Chenglong WANG ; Caiyue LIN ; Guangtian HUANG ; Lingyao ZHOU ; Xiaoting FAN ; Chen LIN
Chinese Acupuncture & Moxibustion 2025;45(6):801-807
OBJECTIVE:
To observe the effects of point-moxibustion with Zhuang medicinal thread on differentially expressed genes (DEGs) in the dorsal root ganglion (DRG), tissue morphology, and the expression of Fc epsilon RI (FcεRI) pathway proteins spleen tyrosine kinase (Syk) and membrane spanning 4-domain A2 (MS4A2) in rat model of postherpetic neuralgia (PHN), and to explore the potential mechanism by which this therapy alleviates pain sensitization.
METHODS:
Thirty-nine male Sprague-Dawley (SD) rats were randomly divided into a control group, a model group, and a moxibustion group, with 13 rats in each group. The PHN model was established in the model and moxibustion groups by intraperitoneal injection of resiniferatoxin. In the moxibustion group, bilateral L4-L6 "Jiaji" (EX-B2) points were treated with point-moxibustion with Zhuang medicinal thread from day 7 post-modeling, with two cones per acupoint per session, every other day for a total of 10 sessions. Mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were measured at 1 day before modeling and on days 1, 4, 7, 13, 19, and 25 after modeling. After intervention, HE staining was used to observe DRG morphology. RNA sequencing was performed to analyze DEGs in DRG and conduct bioinformatics analysis. The expression of Syk and MS4A2 mRNA and proteins in the FcεRI pathway in DRG was detected by quantitative PCR and Western blot.
RESULTS:
Compared with the control group, the model group exhibited decreased MWT (P<0.05) and increased TWL (P<0.05); histopathological analysis revealed neuronal atrophy, nuclear displacement, and intracellular vacuoles, with a slightly loose arrangement; the RNA-Seq identified 3,207 DEGs (1,997 upregulated and 1,210 downregulated); the mRNA and protein expression levels of Syk and MS4A2 were significantly increased (P<0.01). Compared with the model group, the moxibustion group showed increased MWT (P<0.05) and decreased TWL (P<0.05), with relatively normal neuronal morphology; the RNA-Seq identified 426 DEGs (250 upregulated and 176 downregulated); the mRNA and protein expression levels of Syk and MS4A2 were significantly decreased (P<0.05). Venn diagram analysis identified 156 DEGs that showed a reversal in expression trends after treatment, including Syk and MS4A2, which are associated with pain sensitization. KEGG pathway analysis indicated that these DEGs were primarily enriched in the FcεRI pathway.
CONCLUSION
Point-moxibustion with Zhuang medicinal thread could alleviate pain sensitization in PHN rats, possibly by inhibiting the FcεRI signaling pathway and downregulating the expression of Syk and MS4A2.
Animals
;
Rats, Sprague-Dawley
;
Male
;
Rats
;
Moxibustion
;
Neuralgia, Postherpetic/physiopathology*
;
Syk Kinase/metabolism*
;
Acupuncture Points
;
Humans
;
Ganglia, Spinal/metabolism*
;
Signal Transduction
2.Effect of Yuxuebi Tablets on mice with inflammatory pain based on GPR37-mediated inflammation resolution.
Ying LIU ; Guo-Xin ZHANG ; Xue-Min YAO ; Wen-Li WANG ; Ao-Qing HUANG ; Hai-Ping WANG ; Chun-Yan ZHU ; Na LIN
China Journal of Chinese Materia Medica 2025;50(1):178-186
In order to investigate whether the effect of Yuxuebi Tablets on the peripheral and central inflammation resolution of mice with inflammatory pain is related to their regulation of G protein-coupled receptor 37(GPR37), an inflammatory pain model was established by injecting complete Freund's adjuvant(CFA) into the paws of mice, with a sham-operated group receiving a similar volume of normal saline. The mice were assigned randomly to the sham-operated group, model group, ibuprofen group(91 mg·kg~(-1)), and low-, medium-, and high-dose groups of Yuxuebi Tablets(60, 120, and 240 mg·kg~(-1)). The drug was administered orally from days 1 to 19 after modeling. Von Frey method and the hot plate test were used to detect mechanical pain thresholds and heat hyperalgesia. The levels of interleukin-10(IL-10) and transforming growth factor-beta(TGF-β) in the spinal cord were quantified using enzyme-linked immunosorbent assay(ELISA), and the mRNA and protein expression of GPR37 in the spinal cord was measured by real-time quantitative reverse transcription PCR(qRT-PCR) and Western blot. Additionally, immunofluorescence was used to detect the expression of macrosialin antigen(CD68), mannose receptor(MRC1 or CD206), and GPR37 in dorsal root ganglia, as well as the expression of calcium-binding adapter molecule 1(IBA1), CD206, and GPR37 in the dorsal horn of the spinal cord. The results showed that compared with those of the sham-operated group, the mechanical pain thresholds and hot withdrawal latency of the model group significantly declined, and the expression of CD68 in the dorsal root ganglia and the expression of IBA1 in the dorsal horn of the spinal cord significantly increased. The expression of CD206 and GPR37 significantly decreased in the dorsal root ganglion and dorsal horn of the spinal cord, and IL-10 and TGF-β levels in the spinal cord were significantly decreased. Compared with those of the model group, the mechanical pain thresholds and hot withdrawal latency of the high-dose group of Yuxuebi Tablets significantly increased, and the expression of CD68 in the dorsal root ganglion and IBA1 in the dorsal horn of the spinal cord significantly decreased. The expression of CD206 and GPR37 in the dorsal root ganglion and dorsal horn of the spinal cord significantly increased, as well as IL-10 and TGF-β levels in the spinal cord. These findings indicated that Yuxuebi Tablets may reduce macrophage(microglial) infiltration and foster M2 macrophage polarization by enhancing GPR37 expression in the dorsal root ganglia and dorsal horn of the spinal cord of CFA-induced mice, so as to improve IL-10 and TGF-β levels, promote resolution of both peripheral and central inflammation, and play analgesic effects.
Inflammation/genetics*
;
Pain/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Animals
;
Mice
;
Freund's Adjuvant/pharmacology*
;
Ibuprofen
;
Pain Threshold/drug effects*
;
Hyperalgesia/genetics*
;
Ganglia, Spinal
;
Interleukin-10/genetics*
;
Transforming Growth Factor beta/genetics*
;
Reverse Transcriptase Polymerase Chain Reaction
;
Tablets
;
Receptors, G-Protein-Coupled
3.The Bed Nucleus of the Stria Terminalis-Paraventricular Nucleus of the Hypothalamus Neural Circuit Regulates Neuropathic Pain Through the Brain-Spleen Axis.
Shoumeng HAN ; Xin CHEN ; Li MA ; Xin ZENG ; Ying WANG ; Tingting XIE ; Fancan WU ; Kun SONG ; Kenji HASHIMOTO ; Hanbing WANG ; Long WANG
Neuroscience Bulletin 2025;41(12):2148-2166
Neuropathic pain is a chronic condition caused by damage or dysfunction in the nervous system. While the spleen may influence neuropathic pain, its role has been poorly understood. This study demonstrates that the spleen plays a crucial role in regulating neuropathic pain through the bed nucleus of the stria terminalis (BNST) - paraventricular nucleus of the hypothalamus (PVN) neural circuit in a chronic constriction injury (CCI) mouse model. Splenectomy, splenic denervation, or splenic sympathectomy significantly increased the mechanical withdrawal threshold (MWT) and reduced macrophage infiltration in the dorsal root ganglia (DRG) of CCI mice. Pseudorabies virus injections into the spleen revealed connections to the BNST and PVN in the brain. Chemogenetic inhibition of the BNST-PVN circuit increased macrophage infiltration in the DRG and decreased the MWT; these effects were reversed by splenectomy, splenic denervation, or sympathectomy. These findings underscore the critical role of the spleen, regulated by the BNST-PVN circuit, in neuropathic pain.
Animals
;
Neuralgia/pathology*
;
Septal Nuclei/physiopathology*
;
Male
;
Spleen/physiopathology*
;
Paraventricular Hypothalamic Nucleus/physiopathology*
;
Mice, Inbred C57BL
;
Splenectomy
;
Mice
;
Neural Pathways/physiopathology*
;
Disease Models, Animal
;
Ganglia, Spinal/physiopathology*
;
Sympathectomy
;
Macrophages
4.SOX11-mediated CBLN2 Upregulation Contributes to Neuropathic Pain through NF-κB-Driven Neuroinflammation in Dorsal Root Ganglia of Mice.
Ling-Jie MA ; Tian WANG ; Ting XIE ; Lin-Peng ZHU ; Zuo-Hao YAO ; Meng-Na LI ; Bao-Tong YUAN ; Xiao-Bo WU ; Yong-Jing GAO ; Yi-Bin QIN
Neuroscience Bulletin 2025;41(12):2201-2217
Neuropathic pain, a debilitating condition caused by dysfunction of the somatosensory nervous system, remains difficult to treat due to limited understanding of its molecular mechanisms. Bioinformatics analysis identified cerebellin 2 (CBLN2) as highly enriched in human and murine proprioceptive and nociceptive neurons. We found that CBLN2 expression is persistently upregulated in dorsal root ganglia (DRG) following spinal nerve ligation (SNL) in mice. In addition, transcription factor SOX11 binds to 12 cis-regulatory elements within the Cbln2 promoter to enhance its transcription. SNL also induced SOX11 upregulation, with SOX11 and CBLN2 co-localized in nociceptive neurons. The siRNA-mediated knockdown of Sox11 or Cbln2 attenuated SNL-induced mechanical allodynia and thermal hyperalgesia. High-throughput sequencing of DRG following intrathecal injection of CBLN2 revealed widespread gene expression changes, including upregulation of numerous NF-κB downstream targets. Consistently, CBLN2 activated NF-κB signaling, and inhibition with pyrrolidine dithiocarbamate reduced CBLN2-induced pain hypersensitivity, proinflammatory cytokines and chemokines production, and neuronal hyperexcitability. Together, these findings identified the SOX11/CBLN2/NF-κB axis as a critical mediator of neuropathic pain and a promising target for therapeutic intervention.
Animals
;
Neuralgia/metabolism*
;
Ganglia, Spinal/metabolism*
;
Up-Regulation
;
Mice
;
NF-kappa B/metabolism*
;
SOXC Transcription Factors/genetics*
;
Male
;
Neuroinflammatory Diseases/metabolism*
;
Mice, Inbred C57BL
;
Nerve Tissue Proteins/genetics*
;
Hyperalgesia/metabolism*
;
Signal Transduction
;
Spinal Nerves
5.Suppressing DBNDD2 promotes neuron growth and axon regeneration in adult mammals.
Lan ZHANG ; Yucong WU ; Zhuheng ZHONG ; Tianyun CHEN ; Yuyue QIAN ; Sheng YI ; Leilei GONG
Frontiers of Medicine 2025;19(4):636-652
Effective axon regeneration is essential for the successful restoration of nerve functions in patients suffering from axon injury-associated neurological diseases. Certain self-regeneration occurs in injured peripheral axonal branches of dorsal root ganglion (DRG) neurons but does not occur in their central axonal branches. By performing rat sciatic nerve or dorsal root axotomy, we determined the expression of the dysbindin domain containing 2 (DBNDD2) in the DRGs after the regenerative peripheral axon injury or the non-regenerative central axon injury, respectively, and found that DBNDD2 is down-regulated in the DRGs after peripheral axon injury but up-regulated after central axon injury. Furthermore, we found that DBNDD2 expression differs in neonatal and adult rat DRGs and is gradually increased during development. Functional analysis through DBNDD2 knockdown revealed that silencing DBNDD2 promotes the outgrowth of neurites in both neonatal and adult rat DRG neurons and stimulates robust axon regeneration in adult rats after sciatic nerve crush injury. Bioinformatic analysis data showed that transcription factor estrogen receptor 1 (ESR1) interacts with DBNDD2, exhibits a similar expression trend as DBNDD2 after axon injury, and may targets DBDNN2. These studies indicate that reduced level of DBNDD2 after peripheral axon injury and low abundance of DBNDD2 in neonates contribute to axon regeneration and thus suggest the manipulation of DBNDD2 expression as a promising therapeutic approach for improving recovery after axon damage.
Animals
;
Ganglia, Spinal/metabolism*
;
Nerve Regeneration/genetics*
;
Rats
;
Axons/metabolism*
;
Sciatic Nerve/injuries*
;
Rats, Sprague-Dawley
;
Male
6.Strychni Semen and its active compounds promote axon regeneration following peripheral nerve injury by suppressing myeloperoxidase in the dorsal root ganglia.
Yan ZHANG ; Xin-Yue ZHAO ; Meng-Ting LIU ; Zhu-Chen ZHOU ; Hui-Bin CHENG ; Xu-Hong JIANG ; Yan-Rong ZHENG ; Zhong CHEN
Journal of Integrative Medicine 2025;23(2):169-181
OBJECTIVE:
Treating peripheral nerve injury (PNI) presents a clinical challenge due to limited axon regeneration. Strychni Semen, a traditional Chinese medicine, is clinically used for numbness and hemiplegia. However, its role in promoting functional recovery after PNI and the related mechanisms have not yet been systematically studied.
METHODS:
A mouse model of sciatic nerve crush (SNC) injury was established and the mice received drug treatment via intragastric gavage, followed by behavioral assessments (adhesive removal test, hot-plate test and Von Frey test). Transcriptomic analyses were performed to examine gene expression in the dorsal root ganglia (DRGs) from the third to the sixth lumbar vertebrae, so as to identify the significantly differentially expressed genes. Immunofluorescence staining was used to assess the expression levels of superior cervical ganglia neural-specific 10 protein (SCG10). The ultra-trace protein detection technique was used to evaluate changes in gene expression levels.
RESULTS:
Strychni Semen and its active compounds (brucine and strychnine) improved functional recovery in mice following SNC injury. Transcriptomic data indicated that Strychni Semen and its active compounds initiated transcriptional reprogramming that impacted cellular morphology and extracellular matrix remodeling in DRGs after SNC, suggesting potential roles in promoting axon regeneration. Imaging data further confirmed that Strychni Semen and its active compounds facilitated axon regrowth in SNC-injured mice. By integrating protein-protein interaction predictions, ultra-trace protein detection, and molecular docking analysis, we identified myeloperoxidase as a potentially critical factor in the axon regenerative effects conferred by Strychni Semen and its active compounds.
CONCLUSION
Strychni Semen and its active compounds enhance sensory function by promoting axonal regeneration after PNI. These findings establish a foundation for the future applications of Strychni Semen and highlight novel therapeutic strategies and drug targets for axon regeneration. Please cite this article as: Zhang Y, Zhao XY, Liu MT, Zhou ZC, Cheng HB, Jiang XH, Zheng YR, Chen Z. Strychni Semen and its active compounds promote axon regeneration following peripheral nerve injury by suppressing myeloperoxidase in the dorsal root ganglia. J Integr Med. 2025; 23(2): 169-181.
Animals
;
Nerve Regeneration/drug effects*
;
Mice
;
Peripheral Nerve Injuries/physiopathology*
;
Male
;
Ganglia, Spinal/enzymology*
;
Axons/physiology*
;
Peroxidase/antagonists & inhibitors*
;
Mice, Inbred C57BL
;
Drugs, Chinese Herbal/pharmacology*
;
Disease Models, Animal
;
Strychnine/pharmacology*
7.Sema3A secreted by sensory nerve induces bone formation under mechanical loads.
Hongxiang MEI ; Zhengzheng LI ; Qinyi LV ; Xingjian LI ; Yumeng WU ; Qingchen FENG ; Zhishen JIANG ; Yimei ZHOU ; Yule ZHENG ; Ziqi GAO ; Jiawei ZHOU ; Chen JIANG ; Shishu HUANG ; Juan LI
International Journal of Oral Science 2024;16(1):5-5
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling. Here, we focused on the role of Semaphorin 3A (Sema3A), expressed by sensory nerves, in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement (OTM) model. Firstly, bone formation was activated after the 3rd day of OTM, coinciding with a decrease in sensory nerves and an increase in pain threshold. Sema3A, rather than nerve growth factor (NGF), highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM. Moreover, in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells (hPDLCs) within 24 hours. Furthermore, exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload. Mechanistically, Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway, maintaining mitochondrial dynamics as mitochondrial fusion. Therefore, Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation, both as a pain-sensitive analgesic and a positive regulator for bone formation.
Humans
;
Bone Remodeling
;
Cell Differentiation
;
Osteogenesis
;
Semaphorin-3A/pharmacology*
;
Trigeminal Ganglion/metabolism*
8.Mas-related gene C (MrgC) receptor activation induced inhibition of neurochemical alterations in the spinal dorsal horn and dorsal root ganglia in a rat model of bone cancer pain.
Jian-Ping JIANG ; Ke ZHANG ; Fen-Juan HU ; Yan-Guo HONG
Acta Physiologica Sinica 2024;76(6):953-969
Cancer pain is one of the most common symptoms in patients with advanced cancer. In this study, we aimed to investigate the effects of the Mas-related gene C (MrgC) receptors on bone cancer pain. Mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were measured after the inoculation of Walker 256 mammary gland carcinoma cells into the tibia of adult Sprague-Dawley rats. The effects of MrgC receptor agonist bovine adrenal medulla 8-22 (BAM8-22) on nociceptive behaviors were investigated after intrathecal injection on days 16 and 17. Glial fibrillary acidic protein (GFAP)-positive cells in the spinal dorsal cord, and calcitonin gene related peptide (CGRP)-, neuronal nitric oxide synthase (nNOS)- and IL-1β-positive neurons in the dorsal root ganglia (DRG) were examined by immunofluorescence staining. The expression of nNOS and IL-1β proteins in the spinal dorsal horn and the DRG was examined by Western blotting after treatment with (Tyr6)-γ2-MSH-6-12 (MSH), which was another MrgC receptor agonist. The results showed that intrathecal injection of BAM8-22 (30 nmol) attenuated mechanical allodynia in a rat model of bone cancer pain and the effects could last for about 60 min, and single administration of BAM8-22 for two consecutive days reduced mechanical allodynia by about half on the third day. Moreover, the number of GFAP-positive cells in the spinal dorsal horn, and the number of CGRP-, nNOS- and IL-1β-positive neurons in the DRG were decreased. Similarly, intrathecal administration of MSH (15 nmol) reduced the expression of nNOS and IL-1β in the spinal dorsal horn and the DRG. In conclusion, activation of MrgC receptors suppresses the activation of astrocytes in the spinal dorsal cord and the expression of CGRP, nNOS, and IL-1β in the spinal dorsal cord and/or DRG, which may underlie the inhibition of bone cancer pain. These findings provide a novel strategy for the treatment of bone cancer pain.
Animals
;
Cancer Pain/drug therapy*
;
Rats
;
Rats, Sprague-Dawley
;
Bone Neoplasms/complications*
;
Ganglia, Spinal/metabolism*
;
Spinal Cord Dorsal Horn/metabolism*
;
Receptors, G-Protein-Coupled/genetics*
;
Female
;
Calcitonin Gene-Related Peptide/genetics*
;
Interleukin-1beta/metabolism*
;
Peptide Fragments/metabolism*
;
Nitric Oxide Synthase Type I/genetics*
;
Disease Models, Animal
9.Mechanosensitive Ion Channel TMEM63A Gangs Up with Local Macrophages to Modulate Chronic Post-amputation Pain.
Shaofeng PU ; Yiyang WU ; Fang TONG ; Wan-Jie DU ; Shuai LIU ; Huan YANG ; Chen ZHANG ; Bin ZHOU ; Ziyue CHEN ; Xiaomeng ZHOU ; Qingjian HAN ; Dongping DU
Neuroscience Bulletin 2023;39(2):177-193
Post-amputation pain causes great suffering to amputees, but still no effective drugs are available due to its elusive mechanisms. Our previous clinical studies found that surgical removal or radiofrequency treatment of the neuroma at the axotomized nerve stump effectively relieves the phantom pain afflicting patients after amputation. This indicated an essential role of the residual nerve stump in the formation of chronic post-amputation pain (CPAP). However, the molecular mechanism by which the residual nerve stump or neuroma is involved and regulates CPAP is still a mystery. In this study, we found that nociceptors expressed the mechanosensitive ion channel TMEM63A and macrophages infiltrated into the dorsal root ganglion (DRG) neurons worked synergistically to promote CPAP. Histology and qRT-PCR showed that TMEM63A was mainly expressed in mechanical pain-producing non-peptidergic nociceptors in the DRG, and the expression of TMEM63A increased significantly both in the neuroma from amputated patients and the DRG in a mouse model of tibial nerve transfer (TNT). Behavioral tests showed that the mechanical, heat, and cold sensitivity were not affected in the Tmem63a-/- mice in the naïve state, suggesting the basal pain was not affected. In the inflammatory and post-amputation state, the mechanical allodynia but not the heat hyperalgesia or cold allodynia was significantly decreased in Tmem63a-/- mice. Further study showed that there was severe neuronal injury and macrophage infiltration in the DRG, tibial nerve, residual stump, and the neuroma-like structure of the TNT mouse model, Consistent with this, expression of the pro-inflammatory cytokines TNF-α, IL-6, and IL-1β all increased dramatically in the DRG. Interestingly, the deletion of Tmem63a significantly reduced the macrophage infiltration in the DRG but not in the tibial nerve stump. Furthermore, the ablation of macrophages significantly reduced both the expression of Tmem63a and the mechanical allodynia in the TNT mouse model, indicating an interaction between nociceptors and macrophages, and that these two factors gang up together to regulate the formation of CPAP. This provides a new insight into the mechanisms underlying CPAP and potential drug targets its treatment.
Animals
;
Mice
;
Amputation, Surgical
;
Chronic Pain/pathology*
;
Disease Models, Animal
;
Ganglia, Spinal/pathology*
;
Hyperalgesia/etiology*
;
Ion Channels/metabolism*
;
Macrophages
;
Neuroma/pathology*
10.Deciphering the dynamic characteristics of non-neuronal cells in dorsal root ganglion of rat at different developmental stage based on single cell transcriptome data.
Jiaqi ZHANG ; Junhua LIU ; Jie MA ; Pan SHEN ; Yunping ZHU ; Dong YANG
Chinese Journal of Biotechnology 2023;39(9):3772-3786
Dorsal root ganglia (DRG) is an essential part of the peripheral nervous system and the hub of the peripheral sensory afferent. The dynamic changes of neuronal cells and their gene expression during the development of dorsal root ganglion have been studied through single-cell RNAseq analysis, while the dynamic changes of non-neuronal cells have not been systematically studied. Using single cell RNA sequencing technology, we conducted a research on the non-neuronal cells in the dorsal root ganglia of rats at different developmental stage. In this study, primary cell suspension was obtained from using the dorsal root ganglions (DRGs, L4-L5) of ten 7-day-old rats and three 3-month-old rats. The 10×Genomics platform was used for single cell dissociation and RNA sequencing. Twenty cell subsets were acquired through cluster dimension reduction analysis, and the marker genes of different types of cells in DRG were identified according to previous researches about DRG single cell transcriptome sequencing. In order to find out the non-neuronal cell subsets with significant differences at different development stage, the cells were classified into different cell types according to markers collected from previous researches. We performed pseudotime analysis of 4 types Schwann cells. It was found that subtype Ⅱ Schwann cells emerged firstly, and then were subtype Ⅲ Schwann cells and subtype Ⅳ Schwann cells, while subtype Ⅰ Schwann cells existed during the whole development procedure. Pseudotime analysis indicated the essential genes influencing cell fate of different subtypes of Schwann cell in DRG, such as Ntrk2 and Pmp2, which affected cell fate of Schwann cells during the development period. GO analysis of differential expressed genes showed that the up-regulated genes, such as Cst3 and Spp1, were closely related to biological process of tissue homeostasis and multi-multicellular organism process. The down regulated key genes, such as Col3a1 and Col4a1, had close relationship with the progress of extracellular structure organization and negative regulation of cell adhesion. This suggested that the expression of genes enhancing cell homestasis increased, while the expression of related genes regulating ECM-receptor interaction pathway decreased during the development. The discovery provided valuable information and brand-new perspectives for the study on the physical and developmental mechanism of Schwann cell as well as the non-neuronal cell changes in DRG at different developmental stage. The differential gene expression results provided crucial references for the mechanism of somatosensory maturation during development.
Rats
;
Animals
;
Ganglia, Spinal/metabolism*
;
Rats, Sprague-Dawley
;
Transcriptome
;
Neurons/metabolism*
;
Schwann Cells/physiology*

Result Analysis
Print
Save
E-mail