1.One craniotomy at the highest altitude in the world and follow-up study.
Hai-Ning ZHEN ; Wei ZHAO ; Jin-Yin ZHU ; Li WANG ; Zai-Hua GAN ; Wei-Xing DENG ; Peng-Qi LI ; Chang-Bai DENG ; Hai WANG ; Jiang WANG ; Zhou FEI
Chinese Medical Journal 2015;128(7):993-994
Adult
;
Altitude
;
Craniotomy
;
methods
;
Follow-Up Studies
;
Humans
;
Male
;
Young Adult
2.Clinical study of constructing nomogram model based on multi-dimensional clinical indicators to predict prognosis of knee osteoarthritis
Xin WANG ; Cong-Jun YE ; Zhen-Zhong DENG ; Yan XUE ; Chen-Hui WEI ; Qing-Biao LI ; Yang-Ming LUO ; Jian-Zhong GAN
China Journal of Orthopaedics and Traumatology 2024;37(2):184-190
Objective To analyze the factors affecting the prognosis of patients with knee osteoarthritis,and to construct a nomogram prediction model in conjunction with multi-dimensional clinical indicators.Methods The clinical data of 234 pa-tients with knee osteoarthritis who were treated in our hospital from January 2015 to June 2021 were retrospectively analyzed,including 126 males and 108 females;age more than 60 years old for 135 cases,age less than 60 years old for 99 cases.Lysholm knee function score was used to evaluate the prognosis of the patients,and the patients were divided into good progno-sis group for 155 patients and poor prognosis group for 79 patients according to the prognosis.The clinical data of the subjects in the experimental cohort were analyzed by single factor and multiple factors.The patients were divided into experimental co-hort and verification cohort,the results of the multiple factor analysis were visualized to obtain a nomogram prediction model,the receiver operating characteristic curve(ROC),calibration curve and decision curve were used to evaluate the model's dis-crimination,accuracy and clinical benefit rate.Results The results of multivariate analysis showed that smoking,pre-treatment K-L grades of Ⅲto Ⅳ,and high levels of interleukin 6(IL-6)and matrix metallo proteinase-3(MMP-3)were risk factors for the prognosis of patients with knee osteoarthritis.ROC test results showed that the area under the curve of the nomogram model in the experimental cohort and validation cohort was 0.806[95%CI(0.742,0.866)]and 0.786[(95%CI(0.678,0.893)],re-spectively.The results of the calibration curve showed that the Brier values of the experimental cohort and verification cohort were 0.151 points and 0.134 points,respectively.When the threshold probability value in the decision curve was set to 31%,the clinical benefit rates of the experimental cohort and validation cohort were 51%and 56%,respectively.Conclusion The prognostic model of patients with knee osteoarthritis constructed based on multi-dimensional clinical data has both theoretical and practical significance,and can provide a reference for taking targeted measures to improve the prognosis of patients.
3.Impact of thymosin α1 as an immunomodulatory therapy on long-term survival of non-small cell lung cancer patients after R0 resection: a propensity score-matched analysis.
Cheng-Lin GUO ; Jian-Dong MEI ; Yu-Long JIA ; Fan-Yi GAN ; Yu-Dong TANG ; Cheng-Wu LIU ; Zhen ZENG ; Zhen-Yu YANG ; Sen-Yi DENG ; Xing SUN ; Lun-Xu LIU
Chinese Medical Journal 2021;134(22):2700-2709
BACKGROUND:
There is limited information about thymosin α1 (Tα1) as adjuvant immunomodulatory therapy, either used alone or combined with other treatments, in patients with non-small cell lung cancer (NSCLC). This study aimed to evaluate the effect of adjuvant Tα1 treatment on long-term survival in margin-free (R0)-resected stage IA-IIIA NSCLC patients.
METHODS:
A total of 5746 patients with pathologic stage IA-IIIA NSCLC who underwent R0 resection were included. The patients were divided into the Tα1 group and the control group according to whether they received Tα1 or not. A propensity score matching (PSM) analysis was performed to reduce bias, resulting in 1027 pairs of patients.
RESULTS:
After PSM, the baseline clinicopathological characteristics were similar between the two groups. The 5-year disease-free survival (DFS) and overall survival (OS) rates were significantly higher in the Tα1 group compared with the control group. The multivariable analysis showed that Tα1 treatment was independently associated with an improved prognosis. A longer duration of Tα1 treatment was associated with improved OS and DFS. The subgroup analyses showed that Tα1 therapy could improve the DFS and/or OS in all subgroups of age, sex, Charlson Comorbidity Index (CCI), smoking status, and pathological tumor-node-metastasis (TNM) stage, especially for patients with non-squamous cell NSCLC and without targeted therapy.
CONCLUSION
Tα1 as adjuvant immunomodulatory therapy can significantly improve DFS and OS in patients with NSCLC after R0 resection, except for patients with squamous cell carcinoma and those receiving targeted therapy. The duration of Tα1 treatment is recommended to be >24 months.
Carcinoma, Non-Small-Cell Lung/surgery*
;
Chemotherapy, Adjuvant
;
Humans
;
Immunomodulation
;
Lung Neoplasms/surgery*
;
Neoplasm Staging
;
Propensity Score
;
Retrospective Studies
;
Thymalfasin
4.Catalpol ameliorates LPS-induced endometritis by inhibiting inflammation and TLR4/NF-κB signaling.
Hua ZHANG ; Zhi-Min WU ; Ya-Ping YANG ; Aftab SHAUKAT ; Jing YANG ; Ying-Fang GUO ; Tao ZHANG ; Xin-Ying ZHU ; Jin-Xia QIU ; Gan-Zhen DENG ; Dong-Mei SHI
Journal of Zhejiang University. Science. B 2019;20(10):816-827
Catalpol is the main active ingredient of an extract from Radix rehmanniae, which in a previous study showed a protective effect against various types of tissue injury. However, a protective effect of catalpol on uterine inflammation has not been reported. In this study, to investigate the protective mechanism of catalpol on lipopolysaccharide (LPS)-induced bovine endometrial epithelial cells (bEECs) and mouse endometritis, in vitro and in vivo inflammation models were established. The Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathway and its downstream inflammatory factors were detected by enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), western blot (WB), and immunofluorescence techniques. The results from ELISA and qRT-PCR showed that catalpol dose-dependently reduced the expression of pro-inflammatory cytokines such as tumor necrosis factor α (TNF-α), interleukin (IL)-1β, and IL-6, and chemokines such as C-X-C motif chemokine ligand 8 (CXCL8) and CXCL5, both in bEECs and in uterine tissue. From the experimental results of WB, qRT-PCR, and immunofluorescence, the expression of TLR4 and the phosphorylation of NF-κB p65 were markedly inhibited by catalpol compared with the LPS group. The inflammatory damage to the mouse uterus caused by LPS was greatly reduced and was accompanied by a decline in myeloperoxidase (MPO) activity. The results of this study suggest that catalpol can exert an anti-inflammatory impact on LPS-induced bEECs and mouse endometritis by inhibiting inflammation and activation of the TLR4/NF-κB signaling pathway.
Animals
;
Cattle
;
Chemokines/genetics*
;
Cytokines/genetics*
;
Endometritis/drug therapy*
;
Epithelial Cells/drug effects*
;
Female
;
Inflammation/prevention & control*
;
Iridoid Glucosides/therapeutic use*
;
Lipopolysaccharides/pharmacology*
;
Mice
;
NF-kappa B/physiology*
;
Signal Transduction/drug effects*
;
Toll-Like Receptor 4/physiology*
5.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.