1.Expression of prostate-specific membrane antigen in the neovasculature of primary tumors and lymph node metastasis of laryngeal squamous cell carcinomas
Gamze ERKILINÇ ; Hasan YASAN ; Yusuf Çağdaş KUMBUL ; Mehmet Emre SIVRICE ; Meltem DURGUN
Journal of Pathology and Translational Medicine 2022;56(3):134-143
Background:
Prostate-specific membrane antigen (PSMA) expression is encountered in tumor-associated neovascularization.
Methods:
PSMA-antibody was applied to the paraffin blocks of 51 patients who were diagnosed with squamous cell carcinoma of the larynx and underwent laryngectomy and one who underwent lymph node dissection. The percentage of vascular expression in tumoral and extratumoral stroma and lymph nodes and intensity score in tumoral epithelium were evaluated and divided into groups according to the level of PSMA expression. Final PSMA expression was determined by multiplying intensity and percentage scores.
Results:
The mean age was 61±10 years. Patients with perineural invasion, cartilage invasion, and local invasion exhibited higher PSMA expression scores. Age, tumor differentiation, tumor diameter, perineural invasion, tumor localization, capsular invasion, depth of invasion, surgical margin status, local invasion, nodal metastasis, TNM classification, and stage were similar in high and low PSMA expression groups. There was no PSMA expression in extratumoral vascular stroma. Significantly higher PSMA expression was observed in the vascular endothelium of metastatic lymph nodes compared with reactive lymph nodes. Patients with advanced-stage disease exhibited higher PSMA vascular expression scores compared to those with earlier stages (p<.001). PSMA expression was not correlated with overall survival, disease-specific survival, or disease-free survival (p>.05).
Conclusions
Our study suggests that higher PSMA expression is associated with cartilage invasion, local invasion, and advanced-stage of disease. PSMA expression can be utilized for detection of lymph node metastasis and has some predictive role in cases of neck metastasis.
2.Effects of Remote Ischemic Conditioning Methods on Ischemia-Reperfusion Injury in Muscle Flaps: An Experimental Study in Rats.
Durdane KESKIN ; Ramazan Erkin UNLU ; Erkan ORHAN ; Gamze ERKILINÇ ; Nihal BOGDAYCIOGLU ; Fatma Meric YILMAZ
Archives of Plastic Surgery 2017;44(5):384-389
BACKGROUND: The aim of this study was to investigate the effects of remote ischemic conditioning on ischemia-reperfusion injury in rat muscle flaps histopathologically and biochemically. METHODS: Thirty albino rats were divided into 5 groups. No procedure was performed in the rats in group 1, and only blood samples were taken. A gracilis muscle flap was elevated in all the other groups. Microclamps were applied to the vascular pedicle for 4 hours in order to achieve tissue ischemia. In group 2, no additional procedure was performed. In groups 3, 4, and 5, the right hind limb was used and 3 cycles of ischemia-reperfusion for 5 minutes each (total, 30 minutes) was applied with a latex tourniquet (remote ischemic conditioning). In group 3, this procedure was performed before flap elevation (remote ischemic preconditoning). In group 4, the procedure was performed 4 hours after flap ischemia (remote ischemic postconditioning). In group 5, the procedure was performed after the flap was elevated, during the muscle flap ischemia episode (remote ischemic perconditioning). RESULTS: The histopathological damage score in all remote conditioning ischemia groups was lower than in the ischemic-reperfusion group. The lowest histopathological damage score was observed in group 5 (remote ischemic perconditioning). CONCLUSIONS: The nitric oxide levels were higher in the blood samples obtained from the remote ischemic perconditioning group. This study showed the effectiveness of remote ischemic conditioning procedures and compared their usefulness for preventing ischemia-reperfusion injury in muscle flaps.
Animals
;
Extremities
;
Ischemia
;
Ischemic Preconditioning
;
Latex
;
Methods*
;
Nitric Oxide
;
Rats*
;
Reperfusion Injury*
;
Tourniquets
3.Effects of Remote Ischemic Conditioning Methods on Ischemia-Reperfusion Injury in Muscle Flaps: An Experimental Study in Rats.
Durdane KESKIN ; Ramazan Erkin UNLU ; Erkan ORHAN ; Gamze ERKILINÇ ; Nihal BOGDAYCIOGLU ; Fatma Meric YILMAZ
Archives of Plastic Surgery 2017;44(5):384-389
BACKGROUND: The aim of this study was to investigate the effects of remote ischemic conditioning on ischemia-reperfusion injury in rat muscle flaps histopathologically and biochemically. METHODS: Thirty albino rats were divided into 5 groups. No procedure was performed in the rats in group 1, and only blood samples were taken. A gracilis muscle flap was elevated in all the other groups. Microclamps were applied to the vascular pedicle for 4 hours in order to achieve tissue ischemia. In group 2, no additional procedure was performed. In groups 3, 4, and 5, the right hind limb was used and 3 cycles of ischemia-reperfusion for 5 minutes each (total, 30 minutes) was applied with a latex tourniquet (remote ischemic conditioning). In group 3, this procedure was performed before flap elevation (remote ischemic preconditoning). In group 4, the procedure was performed 4 hours after flap ischemia (remote ischemic postconditioning). In group 5, the procedure was performed after the flap was elevated, during the muscle flap ischemia episode (remote ischemic perconditioning). RESULTS: The histopathological damage score in all remote conditioning ischemia groups was lower than in the ischemic-reperfusion group. The lowest histopathological damage score was observed in group 5 (remote ischemic perconditioning). CONCLUSIONS: The nitric oxide levels were higher in the blood samples obtained from the remote ischemic perconditioning group. This study showed the effectiveness of remote ischemic conditioning procedures and compared their usefulness for preventing ischemia-reperfusion injury in muscle flaps.
Animals
;
Extremities
;
Ischemia
;
Ischemic Preconditioning
;
Latex
;
Methods*
;
Nitric Oxide
;
Rats*
;
Reperfusion Injury*
;
Tourniquets