1.Mechanism of action of ginsenoside Rg_2 on diabetic retinopathy and angiogenesis based on YAP/TLRs pathway.
Zhuo-Rong LIU ; Yong-Li SONG ; Shang-Qiu NING ; Yue-Ying YUAN ; Yu-Ting ZHANG ; Gai-Mei HAO ; Jing HAN
China Journal of Chinese Materia Medica 2025;50(6):1659-1669
Ginsenoside Rg_2(GRg2) is a triterpenoid compound found in Panax notoginseng. This study explored its effects and mechanisms on diabetic retinopathy and angiogenesis. The study employed endothelial cell models induced by glucose or vascular endothelial growth factor(VEGF), the chorioallantoic membrane(CAM) model, the oxygen-induced retinopathy(OIR) mouse model, and the db/db mouse model to evaluate the therapeutic effects of GRg2 on diabetic retinopathy and angiogenesis. Transwell assays and endothelial tube formation experiments were conducted to assess cell migration and tube formation, while vascular area measurements were applied to detect angiogenesis. The impact of GRg2 on the retinal structure and function of db/db mice was evaluated through retinal thickness and electroretinogram(ERG) analyses. The study investigated the mechanisms of GRg2 by analyzing the activation of Yes-associated protein(YAP) and Toll-like receptors(TLRs) pathways. The results indicated that GRg2 significantly reduced cell migration numbers and tube formation lengths in vitro. In the CAM model, GRg2 exhibited a dose-dependent decrease in the vascular area ratio. In the OIR model, GRg2 notably decreased the avascular and neovascular areas, ameliorating retinal structural disarray. In the db/db mouse model, GRg2 increased the total retinal thickness and enhanced the amplitudes of the a-wave, b-wave, and oscillatory potentials(OPs) in the ERG, improving retinal structural disarray. Transcriptomic analysis revealed that the TLR signaling pathway was significantly down-regulated following YAP knockdown, with PCR results consistent with the transcriptome sequencing findings. Concurrently, GRg2 downregulated the expression of Toll-like receptor 4(TLR4), TNF receptor-associated factor 6(TRAF6), and nuclear factor-kappaB(NF-κB) proteins in high-glucose-induced endothelial cells. Collectively, GRg2 inhibits cell migration and tube formation and significantly reduces angiogenesis in CAM and OIR models, improving retinal structure and function in db/db mice, with its pharmacological mechanism likely involving the down-regulation of YAP expression.
Animals
;
Ginsenosides/pharmacology*
;
Diabetic Retinopathy/physiopathology*
;
Mice
;
YAP-Signaling Proteins
;
Humans
;
Male
;
Signal Transduction/drug effects*
;
Cell Movement/drug effects*
;
Adaptor Proteins, Signal Transducing/genetics*
;
Mice, Inbred C57BL
;
Neovascularization, Pathologic/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Panax notoginseng/chemistry*
;
Endothelial Cells/metabolism*
;
Transcription Factors/genetics*
;
Angiogenesis
2.Increased Tertiary Lymphoid Structures are Associated with Exaggerated Lung Tissue Damage in Smokers with Pulmonary Tuberculosis.
Yue ZHANG ; Liang LI ; Zi Kang SHENG ; Ya Fei RAO ; Xiang ZHU ; Yu PANG ; Meng Qiu GAO ; Xiao Yan GAI ; Yong Chang SUN
Biomedical and Environmental Sciences 2025;38(7):810-818
OBJECTIVE:
Cigarette smoking exacerbates the progression of pulmonary tuberculosis (TB). The role of tertiary lymphoid structures (TLS) in chronic lung diseases has gained attention; however, it remains unclear whether smoking-exacerbated lung damage in TB is associated with TLS. This study aimed to analyze the characteristics of pulmonary TLS in smokers with TB and to explore the possible role of TLS in smoking-related lung injury in TB.
METHODS:
Lung tissues from 36 male patients (18 smokers and 18 non-smokers) who underwent surgical resection for pulmonary TB were included in this study. Pathological and immunohistological analyses were conducted to evaluate the quantity of TLS, and chest computed tomography (CT) was used to assess the severity of lung lesions. The correlation between the TLS quantity and TB lesion severity scores was analyzed. The immune cells and chemokines involved in TLS formation were also evaluated and compared between smokers and non-smokers.
RESULTS:
Smoker patients with TB had significantly higher TLS than non-smokers ( P < 0.001). The TLS quantity in both the lung parenchyma and peribronchial regions correlated with TB lesion severity on chest CT (parenchyma: r = 0.5767; peribronchial: r = 0.7373; both P < 0.001). Immunohistochemical analysis showed increased B cells, T cells, and C-X-C motif chemokine ligand 13 (CXCL13) expression in smoker patients with TB ( P < 0.001).
CONCLUSION
Smoker TB patients exhibited increased pulmonary TLS, which was associated with exacerbated lung lesions on chest CT, suggesting that cigarette smoking may exacerbate lung damage by promoting TLS formation.
Humans
;
Male
;
Tuberculosis, Pulmonary/immunology*
;
Middle Aged
;
Tertiary Lymphoid Structures/pathology*
;
Adult
;
Lung/pathology*
;
Smoking/adverse effects*
;
Smokers
;
Aged
;
Tomography, X-Ray Computed
3.Oncogenic β-catenin-driven liver cancer is susceptible to methotrexate-mediated disruption of nucleotide synthesis
Fangming LIU ; Yuting WU ; Baohui ZHANG ; Shuhui YANG ; Kezhuo SHANG ; Jie LI ; Pengju ZHANG ; Weiwei DENG ; Linlin CHEN ; Liang ZHENG ; Xiaochen GAI ; Hongbing ZHANG
Chinese Medical Journal 2024;137(2):181-189
Background::Liver cancer is largely resistant to chemotherapy. This study aimed to identify the effective chemotherapeutics for β-catenin-activated liver cancer which is caused by gain-of-function mutation of catenin beta 1 ( CTNNB1), the most frequently altered proto-oncogene in hepatic neoplasms. Methods::Constitutive β-catenin-activated mouse embryonic fibroblasts (MEFs) were established by deleting exon 3 ( β-cateninΔ(ex3)/+ ), the most common mutation site in CTNNB1 gene. A screening of 12 widely used chemotherapy drugs was conducted for the ones that selectively inhibited β-cateninΔ(ex3)/+ but not for wild-type MEFs. Untargeted metabolomics was carried out to examine the alterations of metabolites in nucleotide synthesis. The efficacy and selectivity of methotrexate (MTX) on β-catenin-activated human liver cancer cells were determined in vitro. Immuno-deficient nude mice subcutaneously inoculated with β-catenin wild-type or mutant liver cancer cells and hepatitis B virus ( HBV); β-cateninlox(ex3)/+ mice were used, respectively, to evaluate the efficacy of MTX in the treatment of β-catenin mutant liver cancer. Results::MTX was identified and validated as a preferential agent against the proliferation and tumor formation of β-catenin-activated cells. Boosted nucleotide synthesis was the major metabolic aberration in β-catenin-active cells, and this alteration was also the target of MTX. Moreover, MTX abrogated hepatocarcinogenesis of HBV; β-cateninlox(ex3)/+ mice, which stimulated concurrent Ctnnb1-activated mutation and HBV infection in liver cancer. Conclusion::MTX is a promising chemotherapeutic agent for β-catenin hyperactive liver cancer. Since repurposing MTX has the advantages of lower risk, shorter timelines, and less investment in drug discovery and development, a clinical trial is warranted to test its efficacy in the treatment of β-catenin mutant liver cancer.
4.Effect and mechanism of dandelion flavonoids in alleviating lipopolysaccharide-induced colon epithelial cell injury
Jia-Qi ZHANG ; Dong-Xue MEI ; Sha LI ; Sheng-Gai GAO ; Jia ZHENG ; Hong-Xia LIANG ; Yi WANG
The Chinese Journal of Clinical Pharmacology 2024;40(4):549-553
Objective To investigate the protective effect of dandelion flavone(DF)on lipopolysaccharide(LPS)-induced colon epithelial cell injury by intervening oxidative stress and inflammation with AT-specific binding protein 2(SATB2).Methods Colon epithelial cells FHC were cultured.FHC cells were randomly divided into control group(normal cultured),LPS group(10 μg·mL-1 LPS),experimental-L group(10 μg·mL-1 LPS+1 μmol·L-1 DF),experimental-H group(10 μg·mL-1 LPS+5 μmol·L-1 DF),experimental-H+sh-NC group(transfected with sh-NC+10 μg·mL-1 LPS+5 μmol·mL-1 DF),experimental-H+sh-SATB2 group(transfected with sh-SATB2+10 μg·mL-1 LPS+5μmol·L-1 DF).The relative expression level of SATB2 protein in FHC cells was detected by Western blotting.The survival rate of FHC cells in each group was determined by tetramethylazolium blue(MTT).The apoptosis rate of FHC cells in each group was detected by flow cytometry.The levels of malondialdehyde(MDA)and interleukin-6(IL-6)in FHC cells were detected by the kit.Results The relative expression levels of SATB2 protein in control group,LPS group,experimental-H group,experimental-H+sh-NC group and experimental-H+sh-SATB2 group were 0.83±0.09,0.19±0.03,0.66±0.05,0.62±0.07 and 0.23±0.03,respectively;cell viability rates were(100.00±1.00)%,(48.16±4.31)%,(85.31±5.83)%,(81.39±6.47)%and(58.75±5.24)%,respectively;cell apoptosis rates were(3.27±0.81)%,(41.26±2.09)%,(11.35±1.04)%,(10.29±1.26)%and(35.87±2.15)%,respectively;MDA levels were(13.16±1.73),(52.87±3.49),(23.19±2.05),(20.98±3.17)and(44.87±3.05)μmol·L-1,respectively;IL-6 levels were(507.18±103.26),(2 132.09±198.15),(883.16±136.92),(801.69±119.85)and(1 736.29±206.91)pg·mL-1,respectively.The above indicators in the LPS group showed significant differences compared to the control group(all P<0.05);the above indicators in the experimental-H group showed significant differences compared to the LPS group(all P<0.05);the above indicators in the experimental-H+sh-SATB2 group showed significant differences compared to the experimental-H+sh-NC group(all P<0.05).Conclusion DF has a protective effect on LPS-induced colon epithelial cell injury by intervening oxidative stress and inflammation through SATB2.
5.Dayuanyin Regulates TLR/MAPK/NF-κB Pathway for Preventing and Treating Acute Lung Injury Induced by H1N1 Infection
Chengze LI ; Fuhao CHU ; Yuan LI ; Yunze LIU ; Haocheng ZHENG ; Sici WANG ; Yixiao GU ; Wanhong ZHU ; Ruoshi ZHANG ; Xingjian SONG ; Cong GAI ; Xia DING
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(18):52-60
ObjectiveTo investigate the therapeutic effect of Dayuanyin on acute lung injury induced by H1N1 infection and decipher the potential mechanism. MethodThe constituents in Dayuanyin were analyzed by ultra-high performance liquid chromatography-quadrupole-exactive orbitrap mass spectrometry (UHPLC-Q-Exactive Orbitrap MS). Forty-eight female BALB/c mice were randomized into normal, model, oseltamivir (19.5 mg·kg-1), and low-, medium-, and high-dose (2.73, 5.46, 10.92 g·kg-1) Dayuanyin groups. The normal and model groups were administrated with deionized water by gavage, and the other groups were administrated with the corresponding drugs by gavage. On day 3 of drug administration, the normal group received nasal inhalation of normal saline, and the other groups were inoculated intranasally with A/RP/8/34 (H1N1) for the modeling of influenza virus infection. Mice were administrated with drugs continuously for 7 days and weighed daily. Sampling was performed 12 h after the last administration, and the lung tissue was weighed to calculate the lung index. Hematoxylin-eosin staining was performed to observe the pathological and morphological changes of the lung tissue and bronchi. The cytometric bead array (CBA) was used to measure the serum levels of interferon-gamma (IFN-γ), C-X-C motif ligand 1 (CXCL1), tumor necrosis factor-alpha (TNF-α), chemokine ligand 2 (CCL2), interleukin-12p70 (IL-12p70), chemokine ligand 5 (CCL5), interleukin-1β (IL-1β), chemokine (C-X-C motif) ligand 10 (CXCL10), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-10 (IL-10), interferon-beta (IFN-β), interferon-alpha (IFN-α), and interleukin-6 (IL-6). According to the results of mass spectrometry and network pharmacology, we analyzed the mechanism of Dayuanyin in treating acute lung injury caused by H1N1. The protein levels of extracellular signal-regulated kinase 1/2 (ERK1/2), p38 mitogen-activated protein kinase (p38 MAPK), nuclear factor-kappa B (NF-κB), and their phosphorylated forms were determined by Western blot. The mRNA levels of myeloid differentiation factor 88 (MyD88), Toll-like receptor 3 (TLR3), Toll-like receptor 7 (TLR7), and Toll-like receptor 8 (TLR8) in the lung tissue were measured by Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). ResultA total of 57 compounds, including paeoniflorin and baicalein, were detected in Dayuanyin. Compared with the normal group, the model group showed decreased body weight (P<0.01), lung edema and hemorrhage, increased lung index (P<0.01), and elevated levels of IFN-γ, IL-12p70, CCL5, IL-1β, CXCL10, GM-CSF, IFN-β, and IL-6 (P<0.01). Compared with the model group, Dayuanyin attenuated alveolar wall thickening, capillary congestion, and immune cell infiltration, reduced the alterations in body weight and lung index (P<0.01), and down-regulated the protein levels of IFN-γ, IL-12p70, CCL5, IL-1β, CXCL10, GM-CSF, IFN-β, and IL-6 (P<0.01). A total of 57 key genes were predicted by network pharmacological analysis, of which the MAPK signaling pathway was the main target signaling pathway. Compared with the normal group, the model group showed up-regulation in the protein levels of phosphorylation (p)-ERK1/2, p-p38 MAPK, and p-NF-κB (P<0.01) and the mRNA levels of TLR7, TLR8, MyD88, and TLR3 (P<0.05, P<0.01). Compared with the model group, Dayuanyin lowered the phosphorylation levels of ERK1/2, p38 MAPK, and NF-κB p65 in a dose-dependent manner (P<0.01) and down-regulated the mRNA levels of TLR3, TLR7, TLR8, and MyD88 (P<0.01). ConclusionDayuanyin can prevent and control H1N1 infection-induced acute lung injury by inhibiting the TLR/MAPK/NF-κB signaling pathway.
6.Analysis of clinical characteristics and genetic variants in two pedigrees affected with Autosomal dominant intellectual developmental disorder 49
Yuqiang LYU ; Yanqing ZHANG ; Ning LI ; Kaihui ZHANG ; Min GAO ; Jian MA ; Weitong GUO ; Yi LIU ; Zhongtao GAI
Chinese Journal of Medical Genetics 2024;41(11):1296-1301
Objective:To explore the clinical and genetic features of two Chinese pedigrees affected with Autosomal dominant intellectual developmental disorder 49 (MRD49).Methods:Two MRD49 pedigrees which were admitted to the Children′s Hospital Affiliated to Shandong University respectively on January 28, 2021 and November 10, 2022 were selected as the study subjects. Clinical data of the two pedigrees were collected and analyzed. Genomic DNA was extracted from peripheral blood samples of the probands and their family members. The probands were subjected to mutational analysis by high-throughput sequencing. Candidate variants were validated using real-time fluorescence quantitative PCR (q-PCR) or Sanger sequencing and bioinformatic analysis. This study was approved by the Medical Ethics Committee of the Children′s Hospital Affiliated to Shandong University (No. SDFE-IRB/T-2022002).Results:Proband 1 had presented with language delay, motor retardation and intellectual disability, and his maternal grandmother, mother, aunt and cousin all had various degrees of intellectual disability. Sequencing results showed that proband 1 had deletion of exons 3 ~ 7 of the TRIP12 gene. q-PCR verification showed that his mother, aunt, maternal grandmother and cousin had all harbored the same deletion. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the variant was classified as pathogenic (PVS1+ PM2_Supporting+ PP1). Proband 2, who had mainly presented with language delay, motor retardation and intellectual disability, and was found to harbor a heterozygous c.3010C>T (p.Arg1004*) variant of the TRIP12 gene, which was verified to be de novo in origin. Based on the guidelines from the ACMG, the variant was classified as pathogenic (PVS1+ PS2+ PM2_Supporting). Conclusion:This study had diagnosed two MRD49 families through high-throughput sequencing. Above findings have enriched the phenotypic and mutational spectrum of MRD49 in China, which has also facilitated genetic counseling for the two pedigrees.
7.Research progress of assessment tools for acute skin failure in critically ill patients
Jian ZHANG ; Qingwei LIU ; Xue XUE ; Yanyan LIU ; Yubiao GAI ; Xinjuan ZHAO ; Zunzhu LI ; Lili WEI
Chinese Journal of Modern Nursing 2024;30(2):267-270
Acute skin failure is a common condition of skin damage in critically ill patients, which seriously affects the prognosis of patients. This article summarizes the evaluation indicators, techniques, and comparison of evaluation indicators and techniques for acute skin failure, in order to provide references for the development of acute skin failure evaluation tools and the formulation of nursing measures.
8.Mechanism of Zexie Tang in regulating macrophage M1/M2 polarization balance based on PI3K/AKT pathway
Erwen LI ; Zhenghao CUI ; Gai GAO ; Zhongxue FU ; Xiaowei ZHANG ; Hui WANG ; Zhenqiang ZHANG ; Jiangyan XU ; Zhishen XIE
Chinese Journal of Immunology 2024;40(8):1684-1691,中插1
Objective:To explore the effect and possible mechanism of Zexie Tang(ZXT)regulate the balance of M1/M2 polarization in macrophage cells.Methods:Lipid metabolism disorder mouse model was induced by Western diet(WD)in vivo,RAW264.7 cell M1/M2 macrophage model was induced by LPS/IL-4 in vitro,set up blank group,model group and ZXT group.The flu-orescence intensity of M1 and M2 macrophage markers in adipose tissue and RAW264.7 cells was observed by immunofluorescence staining;protein levels of p-AKT,AKT and COX-2 were measured by Western blot;levels of macrophage marker gene mRNAs of M1 and M2 were analysed by qPCR;IL-1β and IL-10 were measured by ELISA;content of NO was detected by Griess;binding of active components of Alismatis Rhizoma and Atractylodes Macrocephala with PI3K protein was analyzed by Docking.Results:Compared with WD group,expression of CD11c was significantly decreased in ZXT group,while expression of CD206 was significantly up-regulated;ZXT reversed LPS-induced increased in CD80 expression,down-regulated mRNA levels of M1 macrophage marker gene iNOS,etc,decreased the expression of COX-2 protein,and inhibited the secretion of IL-1β(P<0.001);ZXT promoted IL-4-induced CD206 expression,up-regulation of M2 macrophage marker gene Arg-1 and other mRNAs levels and secretion of IL-10;ZXT reversed the LPS-induced increased in NO release;p-AKT/AKT protein level increased in vivo and in vitro after ZXT administration;Docking re-sults show that many active ingredients in Alismatis Rhizoma and Atractylodes Macrocephala could form hydrogen bonds stably with PI3K protein.Conclusion:ZXT regulates the M1/M2 polarization balance of macrophages,and its mechanism may be related to the regulation of PI3K/AKT pathway.
9.Influence of the Pre-shock State on the Prognosis of Medical Patients with Sepsis: A Retrospective Cohort Study.
Lei ZHANG ; Xiao Yan GAI ; Xin LI ; Ying LIANG ; Meng WANG ; Fei Fan ZHAO ; Qing Tao ZHOU ; Yong Chang SUN
Biomedical and Environmental Sciences 2023;36(12):1152-1161
OBJECTIVE:
To investigate the effects of the pre-shock state on the mortality of patients with sepsis.
METHODS:
We enrolled patients with sepsis admitted to the medical intensive care unit of a tertiary care university hospital. These patients were then classified into three groups: sepsis, pre-shock state, and septic shock. The primary outcome was the 28-day mortality rate. The secondary outcomes were the 90-day, 180-day, and 1-year mortality rates.
RESULTS:
A total of 303 patients (groups: sepsis 135 [44.6%]), pre-shock state (93 [30.7%]), and septic shock (75 [24.8%]) completed the 1-year follow-up. The mortality rates at 28 days, 90 days, and 180 days and 1 year were significantly higher in the pre-shock state group than those of the sepsis group, but significantly lower than those in the septic shock group, especially among older patients. When compared with the pre-shock state group, the sepsis group had significantly lower mortality risks at 28 days, 90 days, and 180 days and 1 year, whereas the sepsis shock group had higher mortality risks at these time points.
CONCLUSION
The mortality rates of patients in the pre-shock state were notably different from those of patients with sepsis or septic shock. The introduction of a modified sepsis severity classification, which includes sepsis, pre-shock state, and septic shock, could offer valuable additional prognostic information.
Humans
;
Shock, Septic
;
Retrospective Studies
;
Sepsis
;
Hospitalization
;
Universities
10.miR-765 regulates proliferation, migration, and invasion of papillary thyroid carcinoma cells via Wnt/β-catenin signaling pathway
Rui LI ; Hongyu LIU ; Yang ZHANG ; Baodong GAI
Chinese Journal of Endocrine Surgery 2023;17(4):430-434
Objective:To investigate the role of miR-765 in papillary thyroid carcinoma (PTC) cells and further uncover the associated signaling mechanism.Methods:qPCR was used to assess miR-765 expression in normal human thyroid cell line (Nthy-ori 3-1) and human PTC cell lines (B-CPAP and TPC-1). PTC cells were divided into blank control group (BC) without special treatment, negative control group (NC) that was transfected with negative control sequences, and miR-mimic group that was transfected with miR-mimic. Transfection with miR-mimic was used to up-regulate the expression of miR-765 in PTC cells. CCK-8, plate colony formation, wound-healing, and Transwell invasion assays were used to assess the proliferation, migration, and invasion of PTC cells, respectively. Western blot assay was used to assess the level of nuclear β-catenin, the key protein of the Wnt/β-catenin pathway, in PTC cells.Results:The level of miR-765 expression of PTC cells was significantly lower than that of Nthy-ori 3-1 cells (B-CPAP, P=0.0003; TPC-1, P=0.0003). Transfection with miR-mimic significantly up-regulated miR-765 expression in PTC cells (B-CPAP, P<0.0001; TPC-1, P<0.0001). Results of CCK-8 assay (B-CPAP, P<0.05; TPC-1, P<0.05), plate colony formation assay (B-CPAP, P=0.0001; TPC-1, P<0.0001), wound-healing assay, and Transwell invasion assay (B-CPAP, P=0.001; TPC-1, P=0.0014) showed that up-regulating the expression of miR-765 significantly inhibited the proliferation, migration, and invasion of PTC cells. Western blot results showed that up-regulating the expression of miR-765 significantly reduced nuclear β-catenin (B-CPAP, P=0.0039; TPC-1, P=0.0004) . Conclusion:up-regulating the expression of miR-765 inhibits the proliferation, migration, and invasion of PTC cells and the Wnt/β-catenin signaling pathway, which not only proposes miR-765 as a novel potential therapeutic target for PTC, but also further revealed the associated mechanism.

Result Analysis
Print
Save
E-mail