1.Clinical and genetic characteristics for 4 patients with Type Ib pseudohypoparathyroidism.
Yujun WANG ; Wenjun YANG ; Ping JIN ; Liling ZHAO ; Honghui HE
Journal of Central South University(Medical Sciences) 2022;47(10):1461-1466
Pseudohypoparayhyroidism (PHP) is a rare autosomal dominant or recessive genetic disorder characterized by low calcium, high phosphorus, and target organ resistance to parathyroid. The clinical characteristics and genetic features in 4 patients with Type Ib PHP in the Third Xiangya Hospital, Central South University, have been reviewed. All 4 patients had low calcium, high phosphorus, and parathyroid resistance. Among them, 2 patients had slightly elevated thyroid stimulating hormone and mild features of Albright's hereditary osteodystrophy, and one patient had hypokalemia. No guanine nucleotide-binding protein alpha-stimulating activity polypeptide 1 (GNAS) and gene variant associated with hypokalemia were identified using the whole exome sequencing. The results of the methylation-specific multiple ligation-dependent probe amplification showed that there were abnormal methylation of the upstream differentially methylated regions of GNAS in the 4 patients. There were phenotype overlap among the various subtypes of PHP. Detection of GNAS gene methylation in patients with clinical suspicion of Type Ib PHP is helpful for the diagnosis and treatment of PHP.
Humans
;
Chromogranins/genetics*
;
GTP-Binding Protein alpha Subunits, Gs/genetics*
;
Hypokalemia
;
Calcium
;
Pseudohypoparathyroidism/genetics*
;
Phosphorus
2.Genetic analysis of a child with early onset neurodevelopmental disorder with involuntary movement and a literature review.
Wenjing HU ; Hongjun FANG ; Jingwen TANG ; Zhen ZHOU ; Liwen WU
Chinese Journal of Medical Genetics 2023;40(4):385-389
OBJECTIVE:
To explore the clinical phenotype and genetic basis of a child with early onset neurodevelopmental disorder with involuntary movement (NEDIM).
METHODS:
A child who presented at Department of Neurology of Hunan Children's Hospital on October 8, 2020 was selected as the study subject. Clinical data of the child were collected. Genomic DNA was extracted from peripheral blood samples of the child and his parents. Whole exome sequencing (WES) was carried out for the child. Candidate variant was verified by Sanger sequencing and bioinformatic analysis. Relevant literature was searched from the CNKI, PubMed and Google Scholar databases to summarize the clinical phenotypes and genetic variants of the patients.
RESULTS:
This child was a 3-year-and-3-month boy with involuntary trembling of limbs and motor and language delay. WES revealed that the child has harbored a c.626G>A (p.Arg209His) variant of the GNAO1 gene. Sanger sequencing confirmed that neither of his parents has carried the same variant. The variant had been reported in HGMD and ClinVar databases, but not in the dbSNP, ExAC and 1000 Genomes databases. Prediction with SIFT, PolyPhen-2, and Mutation Taster online software suggested that the variant may be deleterious to the protein function. By UniProt database analysis, the encode amino acid is highly conserved among various species. Prediction with Modeller and PyMOL software indicated that the variant may affect the function of GαO protein. Based on the guideline of the American College of Medical Genetics and Genomics (ACMG), the variant was rated as pathogenic.
CONCLUSION
The GNAO1 gene c.626G>A (p.Arg209His) variant probably underlay the NEDIM in this child. Above finding has expanded the phenotypic spectrum of GNAO1 gene c.626G>A (p.Arg209His) variant and provided a reference for clinical diagnosis and genetic counseling.
Humans
;
Computational Biology
;
Genetic Counseling
;
Genomics
;
Mutation
;
Neurodevelopmental Disorders/genetics*
;
Dyskinesias
;
GTP-Binding Protein alpha Subunits, Gi-Go
3.An analysis of GNAS and THRA gene mutations in children with congenital hypothyroidism.
Xiao-Yu CHEN ; Yong LIU ; Jian-Hua LIU ; Xiao-Song QIN
Chinese Journal of Contemporary Pediatrics 2019;21(7):680-684
OBJECTIVE:
To preliminarily investigate the relationship between stimulatory G protein α subunit (GNAS) and thyroid hormone receptor α (THRA) gene mutations and clinical phenotypes in children with congenital hypothyroidism (CH).
METHODS:
A total of 70 children with CH diagnosed by neonatal screening were enrolled. Their peripheral blood samples were collected to extract genomic DNA. GNAS and THRA genes were screened for mutations using next-generation sequencing. Bioinformatics software was used to analyze the pathogenicity of gene mutations.
RESULTS:
Of the 70 children with CH, nine missense mutations (three known mutations and six novel mutations) in the GNAS gene were detected in three patients (4%), and one gene polymorphism, c.508A>G(p.I170V), in the THRA gene was detected in four patients. The analysis results of bioinformatics software and ACMG/AMP guidelines showed that the two GNAS gene mutations [c.301C>T(p.R101C) and c.334G>A(p.E112K)] were more likely to be pathogenic. Three children with GNAS gene mutations showed different degrees of hypothyroidism.
CONCLUSIONS
GNAS gene mutations are related to the development of CH, and children with CH have different clinical manifestations. THRA gene mutations may not be associated with CH.
Chromogranins
;
genetics
;
Congenital Hypothyroidism
;
GTP-Binding Protein alpha Subunits, Gs
;
genetics
;
Genes, erbA
;
Humans
;
Infant, Newborn
;
Mutation
;
Phenotype
;
Thyroid Hormone Receptors alpha
;
genetics
4.Palmitoylation of GNAQ/11 is critical for tumor cell proliferation and survival in GNAQ/11-mutant uveal melanoma.
Yan ZHANG ; Baoyuan ZHANG ; Yongyun LI ; Yuting DAI ; Jiaoyang LI ; Donghe LI ; Zhizhou XIA ; Jianming ZHANG ; Ping LIU ; Ming CHEN ; Bo JIAO ; Ruibao REN
Frontiers of Medicine 2022;16(5):784-798
More than 85% of patients with uveal melanoma (UM) carry a GNAQ or GNA11 mutation at a hotspot codon (Q209) that encodes G protein α subunit q/11 polypeptides (Gαq/11). GNAQ/11 relies on palmitoylation for membrane association and signal transduction. Despite the palmitoylation of GNAQ/11 was discovered long before, its implication in UM remains unclear. Here, results of palmitoylation-targeted mutagenesis and chemical interference approaches revealed that the loss of GNAQ/11 palmitoylation substantially affected tumor cell proliferation and survival in UM cells. Palmitoylation inhibition through the mutation of palmitoylation sites suppressed GNAQ/11Q209L-induced malignant transformation in NIH3T3 cells. Importantly, the palmitoylation-deficient oncogenic GNAQ/11 failed to rescue the cell death initiated by the knock down of endogenous GNAQ/11 oncogenes in UM cells, which are much more dependent on Gαq/11 signaling for cell survival and proliferation than other melanoma cells without GNAQ/11 mutations. Furthermore, the palmitoylation inhibitor, 2-bromopalmitate, also specifically disrupted Gαq/11 downstream signaling by interfering with the MAPK pathway and BCL2 survival pathway in GNAQ/11-mutant UM cells and showed a notable synergistic effect when applied in combination with the BCL2 inhibitor, ABT-199, in vitro. The findings validate that GNAQ/11 palmitoylation plays a critical role in UM and may serve as a promising therapeutic target for GNAQ/11-driven UM.
Humans
;
Mice
;
Animals
;
Lipoylation
;
NIH 3T3 Cells
;
Uveal Neoplasms/genetics*
;
Melanoma/genetics*
;
Cell Proliferation
;
Proto-Oncogene Proteins c-bcl-2
;
GTP-Binding Protein alpha Subunits, Gq-G11/genetics*
5.Analysis of GNAS gene variant in a Chinese pedigree affected with pseudohypoparathyroidism.
Qian LI ; Jia HUANG ; Xing DAI ; Jiahuan HE ; Congmin LI ; Yue WANG ; Hongyan LIU
Chinese Journal of Medical Genetics 2023;40(1):31-35
OBJECTIVE:
To explore the genetic etiology of a Chinese pedigree affected with pseudohypoparathyroidism.
METHODS:
Peripheral blood samples of the proband and his parents were collected and subjected to trio-whole exome sequencing (trio-WES). Candidate variants were verified among the pedigree and 50 randomly selected healthy individuals through analysis of restriction fragment length polymorphism. Short tandem repeat (STR) linkage analysis was used to verify the parental origin of the pathogenic variants.
RESULTS:
Trio-WES and Sanger sequencing showed that the proband and his mother had both harbored a c.121C>G (p.His41Asp) variant of the GNAS gene, which was not found in other family members and the 50 healthy controls. The variant was not found in international databases. Based on guidelines from the American College of Medical Genetics and Genomics, the variant was predicted to be likely pathogenic.
CONCLUSION
The novel c.121C>G variant of the GNAS gene probably underlay the disease in this pedigree. Above finding has enriched the spectrum of GNAS gene variants.
Female
;
Humans
;
Pedigree
;
East Asian People
;
Mothers
;
Exome Sequencing
;
Pseudohypoparathyroidism/genetics*
;
Mutation
;
China
;
Chromogranins/genetics*
;
GTP-Binding Protein alpha Subunits, Gs/genetics*
6.Clinical features, mutation of the GNAS1 and pathogenesis of progressive osseous heteroplasia.
Feng-qi WU ; Li WANG ; Ji-zhen ZOU ; Xiao-lan HUANG ; Xin-yu YUAN
Chinese Journal of Pediatrics 2012;50(1):10-14
OBJECTIVETo investigate the clinical features, mutation of the GNAS1 and pathogenesis of progressive osseous heteroplasia (POH).
METHODThe typical clinical, pathological and radiographic features of a boy with POH were collected and summarized following family survey. The GNAS1 gene sequence of all family members were amplified by polymerase chain reaction (PCR) and the products were sequenced directly to identify the mutations. A literature review and long-term follow up were also conducted.
RESULTThe patient was an 11-year-old boy who had the onset in infancy, which indicates a chronic progressive cause of disease. The clinical features include the unsmooth local skin of the right shank where spread many rigid rice-like or irregular slabby uplifts, slabby bone-like sclerosis on the left lower mandible, left masticatory muscles, in lateral subcutaneous site of left hip joint and deep tissue, accompanied by gradually progressive difficulty in opening mouth. Histopathology showed that there were loosened hyperplasia of fibroblast and interstitial edema with punctiformed ossification. Radiographs showed flocculence hyperdense image in the subcutaneous tissues and muscles around left lower mandible, and the left masticatory muscles were obviously involved. The 3-dimensional computed tomography showed dislocations of the left temporomandibular joint. Sheeted hyperdense image with inequable density could be noted in lateral muscles of the left hip. And lamellar hyperdense image parallel to the long axis of the bone could be seen in the subcutaneous dorsum of the left foot and achilles tendon. Macro-thumb and of brachydactylia of the hands and feet were not present. The level of calcium, phosphorus and alkaline phosphatase in the blood were normal. Brother of same father but different mothers was free of the disease and no patient of the same disease was found in maternal line and paternal lines. A mutated allele in exon 7 and a polymorphism in exon 5 were found in GNAS1 gene in both of the patient and his father.
CONCLUSIONThere is possibility/likelihood/probability that Chinese children could develop POH. Translocated dermal ossification began in infancy and shows a progressive cause in childhood. The disease is characterized by the heterotopic ossification of the skin, deep tissue, muscles and facial surface tissues. The location of the mutation in this study was different from that reported in abroad studies although exist in the same exons.
Child ; Chromogranins ; DNA Mutational Analysis ; Exons ; GTP-Binding Protein alpha Subunits, Gs ; genetics ; Humans ; Male ; Mutation ; Ossification, Heterotopic ; diagnosis ; genetics ; pathology ; Pedigree
7.Efficient fusion expression of G13 domain derived from granulysin in Escherichia coli.
Xiaoqiang LIU ; Xiangdong ZHA ; Yazhong XIAO ; Jinhuan YANG ; Nengshu LI
Chinese Journal of Biotechnology 2009;25(2):235-241
The G13 domain derived from granulysin shows high antimicrobial activities against Gram-positive and Gram-negative bacteria but does not lyse Jurkat cells or liposomes. To explore a new approach for high expression of the G13 domain, we fused the sequence encoding G13 to thioredoxin (Trx) gene to construct the recombinant expression vector (pThioHisA-G13). A cyanogen bromide (CNBr) cleavage site was introduced between the Trx and G13 to facilitate final release of the recombinant G13. The recombinant expression vector, pThioHisA-G13, was transformed into E. coli BL21 (DE3). Upon induction by IPTG Trx-G13 fusion protein was expressed and took the form of inclusion bodies counting 58% (W/W) of total cellular proteins. The inclusion body was solved by urea (8 mol/L) and then cleaved by CNBr. We purified the recombinant peptide G13 by one-step cation exchange chromatography. Results of agarose diffuse assay analysis indicated that the recombinant G13 exhibited antibacterial activity. The procedure described in this study will provide a reliable and simple method for highly efficient production of some cationic antimicrobial peptides.
Anti-Infective Agents
;
metabolism
;
Antigens, Differentiation, T-Lymphocyte
;
genetics
;
Cyanogen Bromide
;
pharmacology
;
Escherichia coli
;
genetics
;
metabolism
;
GTP-Binding Protein alpha Subunits, G12-G13
;
biosynthesis
;
genetics
;
Inclusion Bodies
;
metabolism
;
Protein Structure, Tertiary
;
genetics
;
Recombinant Fusion Proteins
;
biosynthesis
;
genetics
;
Thioredoxins
;
genetics
;
Transfection
8.Inhibitory G proteins and their receptors: emerging therapeutic targets for obesity and diabetes.
Michelle E KIMPLE ; Joshua C NEUMAN ; Amelia K LINNEMANN ; Patrick J CASEY
Experimental & Molecular Medicine 2014;46(6):e102-
The worldwide prevalence of obesity is steadily increasing, nearly doubling between 1980 and 2008. Obesity is often associated with insulin resistance, a major risk factor for type 2 diabetes mellitus (T2DM): a costly chronic disease and serious public health problem. The underlying cause of T2DM is a failure of the beta cells of the pancreas to continue to produce enough insulin to counteract insulin resistance. Most current T2DM therapeutics do not prevent continued loss of insulin secretion capacity, and those that do have the potential to preserve beta cell mass and function are not effective in all patients. Therefore, developing new methods for preventing and treating obesity and T2DM is very timely and of great significance. There is now considerable literature demonstrating a link between inhibitory guanine nucleotide-binding protein (G protein) and G protein-coupled receptor (GPCR) signaling in insulin-responsive tissues and the pathogenesis of obesity and T2DM. These studies are suggesting new and emerging therapeutic targets for these conditions. In this review, we will discuss inhibitory G proteins and GPCRs that have primary actions in the beta cell and other peripheral sites as therapeutic targets for obesity and T2DM, improving satiety, insulin resistance and/or beta cell biology.
Animals
;
Diabetes Mellitus, Type 2/drug therapy/*metabolism
;
GTP-Binding Protein alpha Subunits/genetics/*metabolism
;
Humans
;
Insulin-Secreting Cells/metabolism
;
Obesity/drug therapy/*metabolism
;
Receptor, Melatonin, MT2/genetics/*metabolism
;
Receptors, Adrenergic, alpha-1/genetics/*metabolism
;
Receptors, Prostaglandin/genetics/*metabolism
9.A Case of McCune-Albright Syndrome with Associated Multiple Endocrinopathies.
Sang Hun SUNG ; Hyun Dae YOON ; Ho Sang SHON ; Hong Tae KIM ; Woo Young CHOI ; Chang Jin SEO ; Joo Hyoung LEE
The Korean Journal of Internal Medicine 2007;22(1):45-50
McCune-Albright syndrome (MAS) is a rare disorder that develops from an activating mutation in the Gs gene. It is characterized by an association with Polyostotic fibrous dysplasia, and precocious puberty, Caf-au-lait pigmentation, and other endocrinopathies that result from the hyperactivity of a variety of endocrine glands. Recently we encountered a patient with MAS with fibrous dysplasia, skin pigmentation, acromegaly, hyperprolactinemia and a thyroid nodule. A 23-year-old male presented for an evaluation of a change in his facial structures. Fibrous dysplasia was diagnosed by a bone biopsy and radiographic studies. The GH level increased paradoxically after an oral glucose load. The plasma prolactin, IGF-1 and alkaline phosphatase were high. Thyroid ultrasonography revealed multiple nodules. The brain MRI demonstrated a mass in the left pituitary gland. Genetic analysis identified a change from Arg (CGT) at codon 201 to Cys (TGT).
Thyroid Diseases/etiology/genetics
;
Puberty, Precocious/etiology/genetics
;
Mutation
;
Male
;
Hyperprolactinemia/etiology/genetics
;
Humans
;
GTP-Binding Protein alpha Subunits, Gs/*genetics
;
Fibrous Dysplasia, Polyostotic/*diagnosis/genetics/pathology
;
Cafe-au-Lait Spots/etiology/genetics
;
Adult
;
Acromegaly/*diagnosis/etiology
10.Simultaneous deletion of floxed genes mediated by CaMKIIalpha-Cre in the brain and in male germ cells: application to conditional and conventional disruption of Goalpha.
Chan Il CHOI ; Sang Phil YOON ; Jung Mi CHOI ; Sung Soo KIM ; Young Don LEE ; Lutz BIRNBAUMER ; Haeyoung SUH-KIM
Experimental & Molecular Medicine 2014;46(5):e93-
The Cre/LoxP system is a well-established approach to spatially and temporally control genetic inactivation. The calcium/calmodulin-dependent protein kinase II alpha subunit (CaMKIIalpha) promoter limits expression to specific regions of the forebrain and thus has been utilized for the brain-specific inactivation of the genes. Here, we show that CaMKIIalpha-Cre can be utilized for simultaneous inactivation of genes in the adult brain and in male germ cells. Double transgenic Rosa26(+/stop-lacZ)::CaMKIIalpha-Cre(+/Cre) mice generated by crossing CaMKIIalpha-Cre(+/Cre) mice with floxed ROSA26 lacZ reporter (Rosa26(+/stop-lacZ)) mice exhibited lacZ expression in the brain and testis. When these mice were mated to wild-type females, about 27% of the offspring were whole body blue by X-gal staining without inheriting the Cre transgene. These results indicate that recombination can occur in the germ cells of male Rosa26(+/stop-lacZ)::CaMKIIalpha-Cre(+/Cre) mice. Similarly, when double transgenic Gnao(+/f)::CaMKIIalpha-Cre(+/Cre) mice carrying a floxed Go-alpha gene (Gnao(f/f)) were backcrossed to wild-type females, approximately 22% of the offspring carried the disrupted allele (Gnao(Delta)) without inheriting the Cre transgene. The Gnao(Delta/Delta) mice closely resembled conventional Go-alpha knockout mice (Gnao(-/-)) with respect to impairment of their behavior. Thus, we conclude that CaMKIIalpha-Cre mice afford recombination for both tissue- and time-controlled inactivation of floxed target genes in the brain and for their permanent disruption. This work also emphasizes that extra caution should be exercised in utilizing CaMKIIalpha-Cre mice as breeding pairs.
Animals
;
Brain/*metabolism
;
Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics
;
Female
;
GTP-Binding Protein alpha Subunits, Gi-Go/*genetics
;
*Gene Deletion
;
Gene Knockout Techniques/*methods
;
Male
;
Mice
;
RNA, Untranslated/genetics
;
Recombination, Genetic
;
Spermatozoa/*metabolism