1.Plasma Acylcarnitine and Urinary Organic Acid Profiling for the diagnosis of Fatty Acid Oxidation Disorder and Organic Acidurias using tandem mass spectrometry (MS/MS) and gas chromatography tandem with mass spectrometry (GC-MS): a retrospective study.
Sheryl D. Apacible ; Cristine P. Lopez ; BeaDavee Marie H. Somozo ; Dahlia C. Apodaca
Philippine Journal of Health Research and Development 2023;27(2):1-
INTRODUCTION:
Acylcarnitines in plasma and urinary organic acids are essential diagnostic markers for some Inborn Errors of Metabolism (IEM) such as fatty acid oxidation disorders, and disorders related to organic acids metabolism. By virtue of R. A. 9288, Filipino newborn babies are screened for inherited metabolic disorders via the analysis of dried blood spots (DBS) using MS/MS.
OBJECTIVE:
This study aimed to establish the plasma acylcarnitine (PLAC) and urinary organic acid (UOA) profiles of Filipino newborn babies screened at high risk for IEMS using MS/MS and single quadrupole GC-MS analytical techniques. Further, this study describes the process of determining the true positive cases of fatty acid oxidation disorders and some organic acidurias among screened Filipino newborn babies using different sample types such as plasma and urine via flow injection analysis with tandem mass spectrometry (FIA-MS/MS) and another technique such as gas chromatography in tandem with mass spectrometry (GC-MS).
METHODOLOGY:
Plasma acylcarnitine and urinary organic acid analyses were performed using Waters® MS/MS and Agilent® single quadrupole GC-MS, respectively. Results obtained from PLAC and UOA databases and IEM registry of the Biochemical Genetics Laboratory (BGL) covering the period 2015-2021 were utilized to account for the number of confirmed cases out of the total number screened positive for IEMs. Descriptive statistics was also used to evaluate the detection rates of FAODs and Organic Acidurias in Filipino newborn babies screened to be high risk.
RESULTS:
Plasma acylcarnitine analysis was introduced by BGL only in 2015. Data from 2015-2021, indicated 176 true positives out of 1642 babies screened at high risk for FAODs and organic acidurias. The use of plasma and urine samples for measurements in MS/MS and GC-MS yielded a detection rate of 10.7% with 104 Filipino newborn babies afflicted with fatty acid oxidation disorders (FAOD) while 72 were found to be confirmed cases of organic acidurias. Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency was reported to be the most common FAOD with 67 cases. Organic acidurias such as glutaric aciduria type 1 and 3-Methylcrotonyl-CoA carboxylase (3-MCC) deficiency were found to be common with 34 and 26 true positives, respectively.
CONCLUSION
The plasma acylcarnitine and urinary organic acid profiles of Filipino newborn babies with fatty acid oxidation disorders and organic acidurias obtained via MS/MS and GC/MS, respectively, were presented in this paper. This study emphasizes the importance of conducting confirmatory testing to establish the true positives from among those Filipino newborns flagged to be at high risk for FAODs or organic aciduria. The confirmatory tests are based on the use of different samples such as urine and plasma in order to detect and quantify biomarkers for FAODs and organic acidurias using two different analytical techniques such as MS/MS and GC-MS. This study warrants further studies directed towards the validation of analytical methodologies for targeted measurements of biomarkers of IEMS in urine and plasma of newborn babies to increase the efficiency of establishing true positives and to determine the efficiency of administration of interventions on Filipino children with genetic disabilities, that is, for monitoring purposes.
plasma
;
inborn error of metabolism
;
tandem mass spectrometry
;
GC-MS