1.A Comparative Genome-Wide Analysis of GATA Transcription Factors in Fungi.
Jongsun PARK ; Hyojeong KIM ; Soonok KIM ; Sunghyung KONG ; Jaejin PARK ; Seryun KIM ; Hyea young HAN ; Bongsoo PARK ; Kyongyong JUNG ; Yong Hwan LEE
Genomics & Informatics 2006;4(4):147-160
GATA transcription factors are widespread eukaryotic regulators whose DNA-binding domain is a class IV zinc finger motif in the form CX(2)CX(17-20)CX(2)C followed by a basic region. In fungi, they act as transcriptional activators or repressors in several different processes, ranging from nitrogen source utilization to mating-type switching. Using an in-house bioinformatics portal system, we surveyed 50 fungal and 9 out-group genomes and identified 396 putative fungal GATA transcription factors. The proportion of GATA transcription factors within a genome varied among taxonomic lineages. Subsequent analyses of phylogenetic relationships among the fungal GATA transcription factors, as well as a study of their domain architecture and gene structure, demonstrated high degrees of conservation in type IVa and type IVb zinc finger motifs and the existence of distinctive clusters at least at the level of subphylum. The SFH1 subgroup with a 20-residue loop was newly identified, in addition to six well-defined subgroups in the subphylum Pezizomycotina. Furthermore, a novel GATA motif with a 21-residue loop (CX(2)CX(21)CX(2)C, designated 'zinc finger type IVc') was discovered within the phylum Basidiomycota. Our results suggest that fungal GATA factors might have undergone multiple distinct modes of evolution resulting in diversified cellular modulation in fungi.
Basidiomycota
;
Computational Biology
;
Fingers
;
Fungi*
;
GATA Transcription Factors*
;
Genome
;
Nitrogen
;
Portal System
;
Zinc Fingers
2.Expression of GATA-1 and GATA-2 in the bone marrow of patients with Monge's disease.
Jian-ping LI ; Nai-yong JIA ; Zhan-quan LI ; Hong-xin WANG ; Juan SU ; Yu-li LI ; Xue-mei LI
Chinese Journal of Hematology 2007;28(8):537-540
OBJECTIVETo find out how GATA-1 and GATA-2 behave in the bone marrow of patients with Monge's disease.
METHODSThe levels of mRNA in mononuclear cells (MNC) and proteins of GATA-1 and GATA-2 in the bone marrow of patients with Monge's disease and controls were determined by RT-PCR and immune cytolysis chemical method.
RESULTS(1) All patients and controls expressed GATA-1 mRNA (Monge's disease 1.033 +/- 0.146, Control 0.458 +/- 0.076) and GATA-2 mRNA (Monge's disease 0.451 +/- 0.073, Control 0.185 +/- 0.074). All patients expressed both GATA-1 (positive cell counts 77.3 +/- 33.3, positive score 135.4 +/- 75.4) and GATA-2 ( positive cell counts 29.4 +/- 11.4, positive score 48.4 +/- 19.7). All the controls expressed GATA-1 (positive cell counts 18.1 +/- 11.3, positive score 24.2 +/- 13.4) while 12 of 20 controls expressed GATA-2 ( positive cell counts 5.4 +/- 3.0, positive score 7.3 +/- 4.2). The expression of mRNA and proteins of GATA-1 and GATA-2 in Monge's disease were higher than in controls (P < 0.01). (2) There was a positive correlation between GATA-1 and Hb (P < 0.01), as did between mRNA and proteins of GATA-1 and GATA-2. (3) Both the proteins of GATA-1 and GATA-2 located only in the cytoplasm but not the nucleus.
CONCLUSIONSTwo of inherent genes, GATA-1 and GATA-2 which were expressed at higher levels in patients with Monge's disease than in controls might play significant roles in the pathogenesis of Monge's disease.
Adult ; Altitude Sickness ; metabolism ; GATA1 Transcription Factor ; metabolism ; GATA2 Transcription Factor ; metabolism ; Humans ; Male ; Polycythemia ; metabolism ; RNA, Messenger ; metabolism
3.Panax notoginseng saponins induced up-regulation, phosphorylation and binding activity of MEK, ERK, AKT, PI-3K protein kinases and GATA transcription factors in hematopoietic cells.
Xin SUN ; Rui-Lan GAO ; Xiao-Jie LIN ; Wei-Hong XU ; Xiao-Hong CHEN
Chinese journal of integrative medicine 2013;19(2):112-118
OBJECTIVETo investigate the effects of panax notoginseng saponins (PNS) on expression, regulation and phosphorylation of multiple protein kinases in mitogen activated protein kinase (MAPK) intracellular signal pathway and GATA transcription factors in hematopoietic cells, so as to explore its mechanism of proliferation and differentiation activity on hematopoiesis.
METHODSThe human granulocytic HL-60, erythrocytic K562, megakaryocytic CHRF-288 and Meg-01 cell lines were treated by PNS, the positive control of K562, CHRF-288 cells treated by recombination human erythropoietin (Epo) and thrombopoietin (Tpo) respectively. The total cell lysate and nuclei protein were extracted after being treated by PNS, subsequently, analyzed by both Western blot and immune-precipitation. Meanwhile, the nuclei extract was performed for electrophoretic mobility shift assay (EMSA) by using (32)P radio labeled double-stranded GATA consensus oligonucleotide.
RESULTSThe expression levels of kinase MEK-1, MEK-2, ERK-1, ERK-2, AKT-1, AKT-2 and PI-3K were increased by PNS treatment to different extent in four cell lines, depending on cellular heterogeneity and sensitivity to PNS, also phosphorylation of MEK-1, ERK-1 was differentially promoted by PNS respectively P<0.05, 0.01, 0.001). The expression levels of transcription factors GATA-1 and GATA-2 were increased, moreover, their DNA binding activities were raised dramatically in PNS treated K562, CHRF-288 and Meg-01 cells compared with the controls respectively (P<0.05, 0.01, 0.001). The positive control of K562, CHRF-288 cells treated by Epo or Tpo respectively also displayed up-regulation of protein kinases and GATA transcription factors respectively (P<0.05, 0.01, 0.001).
CONCLUSIONThe results indicated that intracellular signal pathway initiated by PNS was involved in MAPK pathway and transcription factors of GATA family in hematopoietic cells. PNS displayed the role to promote proliferation and differentiation, by means of increasing expression level and phosphorylation status of multiple protein kinases, also inducing synthesis of GATA transcription factors and upregulation its DNA binding activity.
Blotting, Western ; Cell Line, Tumor ; DNA ; metabolism ; Electrophoretic Mobility Shift Assay ; Extracellular Signal-Regulated MAP Kinases ; metabolism ; GATA Transcription Factors ; metabolism ; Hematopoietic Stem Cells ; drug effects ; enzymology ; Humans ; Immunoprecipitation ; Mitogen-Activated Protein Kinase Kinases ; metabolism ; Panax notoginseng ; chemistry ; Phosphatidylinositol 3-Kinases ; metabolism ; Phosphorylation ; drug effects ; Protein Binding ; drug effects ; Protein Kinases ; metabolism ; Proto-Oncogene Proteins c-akt ; metabolism ; Saponins ; pharmacology ; Up-Regulation ; drug effects
4.Effect of simulated microgravity on erythroid differentiation of K562 cells and the mechanism.
Bin WU ; Lei ZHENG ; Xiu-Mei HU ; Ya GAO ; Chun-Yan YUE ; Jia-Qiong HONG ; Jie SONG ; Bao-Hong PING
Journal of Southern Medical University 2015;35(10):1422-1427
OBJECTIVETo investigate the effect of simulated microgravity on erythroid differentiation of K562 cells and explore the possible mechanism.
METHODSThe fourth generation rotating cell culture system was used to generate the simulated microgravity environment. Benzidine staining was used to evaluate the cell inhibition rate, and real-time quantitative PCR (qRT-PCR) was used to detect GATA-1, GATA-2, Ets-1, F-actin, β-Tubulin and vimentin mRNA expressions. The changes of cytoskeleton were observed by fluorescence microscopy, and Western blotting was employed to assay F-actin, β-tubulin and vimentin protein expression levels.
RESULTSBenzidine staining showed that simulated microgravity inhibited erythroid differentiation of K562 cells. K562 cells treated with Hemin presented with increased mRNA expression of GATA-1 and reduced GATA-2 and Ets-1 mRNA expressions. Simulated microgravity treatment of the cells resulted in down-regulated GATA-1, F-actin, β-tubulin and vimentin mRNA expressions and up-regulated mRNA expressions of GATA-2 and Ets-1, and reduced F-actin, β-tubulin and vimentin protein expressions. Exposure to simulated microgravity caused decreased fluorescence intensities of cytoskeletal filament F-actin, β-tubulin and vimentin in the cells.
CONCLUSIONSimulated microgravity inhibits erythroid differentiation of K562 cells possibly by causing cytoskeleton damages to result in down-regulation of GATA-1 and up-regulation of GATA-2 and Ets-1 expressions.
Actins ; metabolism ; Cell Differentiation ; Down-Regulation ; GATA1 Transcription Factor ; metabolism ; GATA2 Transcription Factor ; metabolism ; Hemin ; pharmacology ; Humans ; K562 Cells ; Proto-Oncogene Protein c-ets-1 ; metabolism ; Tubulin ; metabolism ; Up-Regulation ; Vimentin ; metabolism ; Weightlessness Simulation
5.Up-regulation of transcription factors GATA-1 and GATA-2 induced by Panax notoginosides in hematopoietic cells.
Rui-lan GAO ; Wei-hong XU ; Xiao-jie LIN ; Xiao-hong CHEN ; Chao-qun WU
Chinese Journal of Hematology 2004;25(5):281-284
OBJECTIVETo observe the role of Panax notoginosides (PNS) in up-regulation of GATA family transcription factors, and explore intracellular signal pathway of PNS in the proliferation of hematopoietic cells.
METHODSHuman bone marrow cells were incubated with different concentrations of PNS for colony-forming assay. Human cell lines HL-60, K562, CHRF-288 and Meg-01 were incubated with PNS (10 mg/L) for 14 days. The cell nuclear proteins were extracted and analyzed by Western blot with antibodies against GATA-1, GATA-2. Electrophoretic mobility shift assay (EMSA) and antibody gel supershift assay was performed using (32)P labeled GATA consensus oligonucleotide which contains binding site for GATA transcription factors.
RESULTSPNS could promote the proliferation of CFU-GM and CFU-E and induce the expression of GATA-1, GATA-2. The nuclear proteins of both GATA-1 and GATA-2 in K562, CHRF-288 and Meg-01 cells treated by PNS were increased by (1.5 - 2.8) and (2.0 - 3.1)-fold over untreated cells respectively. GATA binding activity initiated by PNS was apparently elevated to form higher density band of GATA-DNA complex. While there was no detectable change in HL-60 cells before and after PNS treatment. The predominant GATA binding complex was mainly attributable to both GATA-1 and GATA-2 proteins being in phosphorylated status.
CONCLUSIONPNS can induce the synthesis of transcription factors GATA-1 and GATA-2 and enhance their DNA binding activity, which could play a role in the up-regulation of the expression genes related to proliferation and differentiation in hematopoietic cells.
Blotting, Western ; Bone Marrow Cells ; drug effects ; metabolism ; Cell Line, Tumor ; Cell Proliferation ; drug effects ; Dose-Response Relationship, Drug ; GATA1 Transcription Factor ; metabolism ; GATA2 Transcription Factor ; metabolism ; Ginsenosides ; pharmacology ; HL-60 Cells ; Humans ; K562 Cells ; Panax ; chemistry ; Up-Regulation ; drug effects
6.Expressions of transcription factor GATA-1 and GATA-2 genes in bone marrow stromal cells from patients with leukemia.
Xiu-Li WU ; Yang-Qiu LI ; Zhen WANG ; Li-Jian YANG ; Shao-Hua CHEN ; Huan ZHANG ; Kang-Er ZHU ; Zhong-Chao HAN
Journal of Experimental Hematology 2005;13(1):70-75
In order to investigate expressions of transcription factor GATA-1 and GATA-2 genes in the bone marrow stromal cells (BMSCs) from patients with leukemia or normal controls, bone marrow stromal cells from 34 normal cases and 42 cases with leukemia were cultured long-term in vitro. Nonadherent cells (bone marrow hematopoietic cells) and amplified adherent cells (BMSC) were collected separately. Expressions of GATA-1 and GATA-2 genes were analyzed by using RT-PCR-ELISA; the semi-quantitative expression levels of GATA genes in the BMSCs from patients with leukemia were compared with normal controls. The results showed that expressions of GATA-1 and GATA-2 genes could be detected in the BMSCs and the bone marrow hematopoietic cells from both normal controls and the cases of leukemia. The expression ratio of GATA-1 in the BMSCs from acute lymphocytic leukemia (ALL) (85.7%) was similar to the normal controls (88.2%), whereas the expression ratios in BMSCs from acute myelocytic leukemia (AML) (55.6%) and chronic myelocytic leukemia (CML) (41.2%) were significant lower than the normal controls (P < 0.05). The rank of expression level of GATA-1 gene in the BMSCs was "ALL>AML>normal>CML". There was no difference in the expression level of GATA-2 gene within the BMSCs from normal controls and patients with leukemia. The ranks of expression levels of GATA-1 and GATA-2 genes in bone marrow hematopoietic cells were "AML>normal>ALL>CML" and "AML>CML>ALL>normal". The dominant expression of GATA-2 gene was found in the BMSCs from AML, CML or normal controls. It is inferred that the expressions of GATA-1 and GATA-2 genes in the BMSCs of normal controls and patients with leukemia may influence the regulation of hematopoiesis in the bone marrow stroma and it is worthy of further study to explore their roles in pathogenesis and development of leukemia.
Adolescent
;
Adult
;
Aged
;
Bone Marrow Cells
;
metabolism
;
Child
;
Child, Preschool
;
Enzyme-Linked Immunosorbent Assay
;
Female
;
GATA1 Transcription Factor
;
biosynthesis
;
genetics
;
GATA2 Transcription Factor
;
biosynthesis
;
genetics
;
Gene Expression Regulation, Leukemic
;
Humans
;
Leukemia
;
blood
;
pathology
;
Male
;
Middle Aged
;
Reverse Transcriptase Polymerase Chain Reaction
;
Stromal Cells
;
metabolism
7.The GATA family in reproduction.
Cai-xia JING ; Jia-zhou YANG ; Qing-yan AI ; Nai-zhou MIAO ; Yu-feng ZHAO ; Yan-mei WANG
National Journal of Andrology 2009;15(10):932-936
The GATA family proteins are a group of zinc finger transcription factors that are expressed in human and mammalian animals and play an important role in mammalian organ morphogenesis, cell proliferation and sex differentiation. GATA-4 and GATA-6 have been identified in the ovaries and testes of humans, mice, pigs and chickens. GATA-4 contributes to fetal male gonadal development by regulating the genes that mediate Müllerian duct regression and the onset of testosterone production. GATA-4 and GATA-6 are localized in and regulate the function of the ovarian and testicular somatic cells of fetal mice, especially granulosa cells, thecal cells, Sertoli cells and Leydig cells. GATA-4 is also present in the germ cells of fetal and prepubertal mice.
Animals
;
Chickens
;
Female
;
GATA4 Transcription Factor
;
metabolism
;
GATA6 Transcription Factor
;
metabolism
;
Humans
;
Male
;
Mice
;
Ovary
;
embryology
;
Reproduction
;
Swine
;
Testis
;
embryology
;
Transcription Factors
;
classification
8.MonoMAC syndrome.
Zhao-Long CHEN ; Yun-Fei AN ; Xiao-Dong ZHAO
Chinese Journal of Contemporary Pediatrics 2014;16(8):869-873
MonoMAC syndrome is a newly discovered immune deficiency syndrome caused by GATA-2 mutation, which is an autosomal dominant genetic disease. MonoMAC syndrome has typical immune cell abnormalities, with severe infection and is prone to develop into a hematological disease. Therapeutics for this disease mainly relies on symptomatic treatment and hematopoietic stem cell transplantation. In this paper, the research advances in clinical manifestations, laboratory tests, pathogenesis, diagnosis and treatment of MonoMAC syndrome are reviewed.
GATA2 Transcription Factor
;
genetics
;
Humans
;
Immunologic Deficiency Syndromes
;
genetics
;
Monocytes
;
pathology
;
Mutation
;
Mycobacterium Infections
;
etiology
;
Syndrome
9.Congenital deaf-mutism with pale complexion and anemia for 1 year in a school-aged girl.
Ling-Ling CHEN ; Xiang-Ling HE ; Ke-Ke CHEN
Chinese Journal of Contemporary Pediatrics 2019;21(11):1105-1109
An 11-year-old girl was found to have pale complexion and anemia with gradual aggravation for one year. She was weak in the past and developed pneumonia in the right middle lung 3-5 times per year, which was improved after anti-infective therapy. She and her mother had congenital deaf-mutism. Physical examination showed the appearance of anemia, without bleeding, jaundice, hepatosplenomegaly, or lymph node enlargement. Routine blood test results showed reductions in all three blood cell lines, normocytic anemia, and megaloblastoid change in granulocytic and erythroid cell lines in bone marrow, with no obvious increase in primitive cells or metastatic tumor cells. Whole exome sequencing indicated the presence of a known pathogenic mutation for Emberger syndrome (ES), c.1084C>T (p.Arg362*) in the GATA2 gene. The girl was finally diagnosed with ES, and myelodysplastic syndrome (MDS) progressed to acute myeloid leukemia during follow-up. ES is a rare type of MDS with autosomal dominant inheritance in clinical practice, and it is difficult to make a confirmed diagnosis. ES should be considered for children with unexplained lymphedema and congenital deafness, and gene detection should be performed to make a confirmed diagnosis.
Anemia
;
complications
;
Child
;
Female
;
GATA2 Transcription Factor
;
Humans
;
Lymphedema
;
Mutism
;
complications
;
Myelodysplastic Syndromes
10.Roles of trichorhinophalangeal syndrome-1 gene in normal breast development and breast cancer.
Yi BAO ; Zheng-xiang ZHONG ; Ge CUI ; Li GUO ; Zhao-feng WANG
Acta Academiae Medicinae Sinicae 2013;35(1):121-124
GATA transcription factor family members have been found to involve in the growth and differentiation of mammary gland. Among them GATA-3 is regarded as the most critical regulator involving the tumorigenesis of breast cancer (BC). Recently, trichorhinophalangeal syndrome-1 gene (TRPS-1), a new GATA family member, has been identified to be highly prevalent in breast cancer. Compared with ER-negative breast cancer, the expression of TRPS-1 is higher in ER-positive breast cancer and was significantly correlates with estrogen receptor, progesterone receptor, and GATA-3, indicating it may serve as a ductal epithelial cell-specific regulator in the differentiation of breast ductal epithelial cells. Studies have shown that miR221/222 is able to downregulate the expression of an epithelial cell marker E-cadherin by targeting TRPS-1, resulting in mammary epithelial cells transition to mesenchymal cell (EMT). In addition, it has been well accepted that, and the Science and Technology Bureau of Jiaxing (2012AY1071-2)TRPS-1 plays a role in the differentiation of several other cell types including kidney nephric mesenchymal cells, columnar chondrocytes, and osteoclasts, indicating that TRPS-1 involves in mesenchymal-to-epithelial cell transition (MET). In this article, we summarize the roles of GATA transcription factor TRPS-1 in ductal epithelial cells and the roles of its gene and protein expressions in predicting the prognosis of breast cancer.
Breast Neoplasms
;
genetics
;
pathology
;
DNA-Binding Proteins
;
genetics
;
Epithelial-Mesenchymal Transition
;
Female
;
GATA3 Transcription Factor
;
genetics
;
Humans
;
Transcription Factors
;
genetics