1.Effect of Modified Tuoli Xiaodusan on Patients After Perianal Abscess Surgery on STAT3/VEGF Pathway
Haoyang DU ; Yuan GAO ; Haiqi FU ; Jinling HE ; Jing ZHANG ; Yangyang YU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):187-195
ObjectiveTo explore the clinical efficacy of oral administration of modified Tuoli Xiaodusan on postoperative patients with perianal abscess, and its effects on related inflammatory factors and signal transducers and activators of transcription protein 3 (STAT3)/vascular endothelial growth factor (VEGF) signaling pathways. MethodsFrom January 2023 to December 2023 in Inner Mongolia hospital of traditional Chinese medicine, 60 postoperative patients with perianal abscess who met the inclusion criteria were selected. They were divided into a treatment group and a control group using the random number table method, with 30 cases in each group. The control group received conventional treatment, while the treatment group received additional treatment with modified Tuoli Xiaodusan on the basis of the control group. The course of treatment in both groups was three weeks. On the day of operation and on the 7th, 14th and 21st day after operation, enzyme-linked immunosorbent assay (ELISA) was used to measure the expression levels of serum interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). Hematoxylin eosin (HE) staining was used to observe the pathological morphology of pathological tissue. Western blot was used to measure the levels of phosphorylated STAT3 (p-STAT3) and vascular endothelial growth factor (VEGF) proteins, and real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to determine the expression level of VEGF mRNA. The clinical efficacy of the two groups was compared according to the wound pain, secretion volume score, and healing rate of patients on the 3rd, 7th, 14th, and 21st day after operation. ResultsThe total effective rate of the treatment group was higher than that of the control group (P<0.05). For intra-group comparison, the pain score of the control group decreased at each time period (P<0.05), and the healing rate increased (P<0.05). The secretion volume score decreased on the 14th and 21st days after operation (P<0.05). The pain score and secretion volume score of the treatment group decreased at each time period (P<0.05), and the healing rate increased (P<0.05). The levels of various inflammatory factors decreased in both groups (P<0.05). Compared with those on the surgical day, the levels of p-STAT3 and VEGF proteins in the wound tissue of the two groups were different on the 7th and 21st days after operation (P<0.05). There were significant differences in VEGF mRNA levels in wound tissue between the two groups at each time period (P<0.01). For inter-group comparison, on the 7th and 14th days after operation, the pain score in the treatment group was lower than that in the control group. On the 7th, 14th and 21st days after operation, the secretion volume scores and healing rate of the treatment group were better than those of the control group (P<0.05). The levels of various inflammatory factors in the treatment group were lower than those in the control group (P<0.05), and the decline rate was faster (P<0.05). On the 7th day after operation, the levels of p-STAT3, VEGF protein, and VEGF mRNA in the wound tissue of the treatment group were higher than those in the control group (P<0.05). HE staining showed that the inflammatory cell infiltration in the treatment group decreased faster. The cell arrangement was more orderly, and new blood vessel lumens were visible. There were no abnormalities in the safety observation indexes of all patients during the study period. ConclusionModified Tuoli Xiaodusan can relieve wound pain after perianal abscess surgery, reduce secretions, and improve wound healing rate. The mechanism may be reducing the levels of serum IL-1β, IL-6, and TNF-α, reducing the inflammatory response of the wound, upregulating the expression of p-STAT3 and VEGF proteins, and stimulating the STAT3/VEGF signaling pathway, thereby accelerating angiogenesis and promoting wound healing.
2.Comparison of Wild and Cultivated Bupleurum scorzonerifolium Based on Traditional Quality Evaluation
Changsheng YUAN ; Feng ZHOU ; Xingyu LIU ; Yu SHI ; Yihan WANG ; Huaizhu LI ; Yongliang LI ; Shan GUAN ; Huaizhong GAO ; Yanmeng LIU ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):203-214
ObjectiveTo characterize the quality differences among different germplasm and introduced varieties of Bupleurum scorzonerifolium roots(BSR), and explore the underlying molecular mechanisms, providing a basis for high-quality production and quality control. MethodsWild BSR from Yulin(YLW) served as the quality reference, we conducted comparative analysis among YLW, locally domesticated wild germplasm in Yulin(YLC3), Daqing germplasm introduced and cultivated in Yulin(YLDQC3), and locally cultivated germplasm in Daqing(DQC3). A combination of traditional pharmacognostic methods and modern multi-omics analyses was employed, including macroscopic traits(appearance, odor), microscopic features(proportions of cork, phloem, xylem), cell wall component contents(hemicellulose, cellulose, lignin), carbohydrate contents(starch, water-soluble polysaccharides), marker compound contents(ethanol-soluble extracts, total saponins, liposoluble extracts, and saikosaponins A, B2, C, D), metabolomics, and transcriptomics, in order to systematically characterize quality differences and investigate molecular mechanisms among these samples. ResultsMacroscopically, Yulin-produced BSR(YLW, YLC3, YLDQC3) exhibited significantly greater weight, length, and upper and middle diameters than Daqing-produced BSR(DQC3). Odor-wise, YLW and YLC3 had a a fragrance taste, YLDQC3 had a rancid oil odor, and DQC3 had a sweet and fragrant taste. Microscopically, Yulin germplasm(YLW, YLC3) and Daqing germplasm(YLDQC3, DQC3) shared similar structural features, respectively. However, Yulin germplasm showed significantly higher proportions of cork and phloem, as well as stronger xylem vessel staining intensity compared to Daqing germplasm. Regarding various component contents, Yulin germplasm contained significantly higher levels of ethanol-soluble extracts, total saponins, and saikosaponins A, B2, C, D, while Daqing germplasm had significantly higher levels of hemicellulose, starch, and liposoluble extracts. After introduction to Yulin, the Daqing germplasm(YLDQC3) showed increased starch, water-soluble polysaccharides and liposoluble extracts contents, decreased cell wall component content, but no significant difference in other component contents. Metabolomics revealed that saponins and terpenes accumulated significantly in Yulin germplasm, while alcohols and aldehydes accumulated predominantly in Daqing germplasm. Transcriptomics indicated similar gene expression patterns within the same germplasm but specificity between different germplasms. Integrative metabolomic-transcriptomic analysis identified 145 potential key genes associated with the saikosaponin biosynthesis pathway, including one acetyl-coenzyme A(CoA) acetyltransferase gene(ACAT), one 3-hydroxy-3-methylglutaryl-coenzyme A synthase gene(HMGS), two hydroxymethylglutaryl-CoA(HMG-CoA) reductase genes(HMG), one phosphomevalonate kinase gene(PMK), one 1-deoxy-D-xylose-5-phosphate synthase gene(CLA), one hydroxymethylbuten-1-aldol synthase gene(HDR), two farnesyl pyrophosphate synthase genes(FPPS), one squalene synthase gene(SQS), one β-amyrin synthase gene(BAS), 102 cytochrome P450(CYP450) gene family members, and 32 uridine diphosphate-glucuronosyltransferase(UGT) gene family members. ConclusionAmong the three cultivated types, YLC3 most closely resembles YLW in appearance, microscopic features, contents of major bioactive constituents, metabolomic and transcriptomic profiles. Yulin germplasm exhibits superior saponin synthesis capability compared to Daqing germplasm, and Yulin region is more suitable for the growth of B. scorzonerifolium. Based on these findings, it is recommended that artificial cultivation in northern Shaanxi and similar regions utilize the local Yulin germplasm source cultivated for at least three years.
3.Mechanisms of Intestinal Microecology in Hyperuricemia and Traditional Chinese Medicine Intervention:A Review
Mingyuan FAN ; Jiuzhu YUAN ; Hongyan XIE ; Sai ZHANG ; Qiyuan YAO ; Luqi HE ; Qingqing FU ; Hong GAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):329-338
In recent years, hyperuricemia (HUA) has shown a rapidly increasing incidence and tends to occur in increasingly young people, with a wide range of cardiac, renal, joint, and cancerous hazards and all-cause mortality associations. Western medicine treatment has limitations such as large liver and kidney damage, medication restriction, and easy recurrence. The intestine is the major extra-renal excretion pathway for uric acid (UA), and the intestinal microecology can be regulated to promote UA degradation. It offers great potential to develop UA-lowering strategies that target the intestinal microecology, which are promising to provide safer and more effective therapeutic approaches. Traditional Chinese medicine (TCM) can treat HUA via multiple targets and multiple pathways from a holistic view, with low toxicity and side effects. Studies have shown that intestinal microecology is a crucial target for TCM in the treatment of HUA. However, its specific mechanism of action has not been fully elucidated. Focusing on the key role of intestinal microecology in HUA, this review explores the relationship between intestinal microecology and HUA in terms of intestinal flora, intestinal metabolites, intestinal UA transporters, and intestinal barriers. Furthermore, we summarize the research progress in TCM treatment of HUA by targeting the intestinal microecology, with the aim of providing references for the development of TCM intervention strategies for HUA and the direction of future research.
4.Compound Xishu Granules Inhibit Proliferation of Hepatocellular Carcinoma Cells by Regulating Ferroptosis
Yuan TIAN ; Yuxi WANG ; Zhen LIU ; Yuncheng MA ; Hongyu ZHU ; Xiaozhu WANG ; Qian LI ; Jian GAO ; Weiling WANG ; Wenhui XU ; Ting WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):37-45
ObjectiveTo study the mechanism of compound Xishu granules (CXG) in inhibiting the proliferation of hepatocellular carcinoma cells by regulating ferroptosis. MethodsThe transplanted tumor model of human Huh7 was established with nude mice and the successfully modeled mice were randomized into model, Fufang Banmao (0.21 g·kg-1), low-dose (1.87 g·kg-1) CXG, medium-dose (3.74 g·kg-1) CXG, and high-dose (7.49 g·kg-1) CXG groups. Mice were administrated with drinking water or CXG for 28 days, and the body weight and tumor volume were measured every 4 days. Hematoxylin-eosin staining was employed to observe the histopathological changes of tumors. The cell-counting kit-8 (CCK-8) was used to examine the survival rate of Huh7 cells treated with different concentrations (0, 31.25, 62.5, 125, 250, 500, 1 000 mg·L-1) of CXG for 24 h and 48 h. CA-AM, DCFH-DA, and C11-BODIPY581/591 fluorescent probes were used to determine the intracellular levels of ferrous ion (Fe2+), reactive oxygen species (ROS), and lipid peroxide (LPO), respectively. The colorimetric method was employed to measure the levels of glutathione (GSH) and superoxide dismutase (SOD). Western blot was employed to determine the protein levels of glutathione peroxidase 4 (GPX4), transferrin receptor 1 (TFR1), and ferritin heavy chain 1 (FTH1), respectively. ResultsIn the animal experiment, compared with the model group, the drug treatment groups showed reductions in the tumor volume from day 12 (P<0.01). After treatment, the Fufang Banmao and low-, medium-, and high-dose CXG groups had lower tumor volume, relative tumor volume, and tumor weight than the model group (P<0.05), with tumor inhibition rates of 48.99%, 79.93%, 91.38%, and 97.36%, respectively. Moreover, the CXG groups had lower tumor volume and relative tumor volume (P<0.05 in all the three dose groups) and lower tumor weight (P<0.05 in medium-dose and high-dose groups) than the Fufang Banmao group. Compared with the model group, the drug treatment groups showed reduced number of tumor cells, necrotic foci with karyopyknosis, nuclear fragmentation, and nucleolysis, and the high-dose CXG group showed an increase in the proportion of interstitial fibroblasts. In the cell experiment, compared with the blank group, CXG reduced the survival rate of Huh7 cells in a dose-dependent manner after incubation for 24 h and 48 h (P<0.05). Compared with the blank group, the RSL3 group and the low-, medium-, and high-dose CXG groups showed a decrease in the relative fluorescence intensity of CA-AM and increases in the fluorescence intensity of DCFH-DA and fluorescence ratio of C11-BODIPY581/591, which indicated elevations in the levels of Fe2+ (P<0.01), ROS (P<0.05), and LPO (P<0.01), respectively. Compared with the blank group, the RSL3 and low-, medium-, and high-dose CXG groups showed lowered levels of GSH and SOD (P<0.05). In addition, the RSL3 group and the medium- and high-dose CXG groups showed down-regulated expression of GPX4 and FTH1 (P<0.05), and the low- and high-dose CXG groups presented up-regulated expression of TFR1 (P<0.05). ConclusionCXG suppresses the proliferation of hepatocellular carcinoma cells by inducing ferroptosis via downregulating the GSH-GPX4 signaling axis and increasing intracellular Fe2+and LPO levels.
5.Effects of Shenfuhuang Formula (参附黄配方) on Potential Targets of Action in the Brain Tissue of Sepsis Model Mice:Transcriptomics-Based Exploration
Yuchen WANG ; Xuerui WANG ; Xiaolong XU ; Jingxia ZHAO ; Jiabo WANG ; Yuan GAO ; Weijun KONG ; Qingquan LIU
Journal of Traditional Chinese Medicine 2025;66(1):65-70
ObjectiveTo investigate the possible mechanism of Shenfuhuang Formula (参附黄配方) in prevention and treatment of epsis-associated encephalopathy from the perspective of brain genomics. MethodsC57BL/6 mice were randomly divided into sham surgery group, sepsis group, and Shenfuhuang group, with 20 mice in each group. The sepsis group and Shenfuhuang group were induced to develop sepsis by cecal ligation and puncture (CLP) procedure. At 4 hours after modelling, Shenfuhuang group were gavaged with 2.5 g/(kg·d) of Shenfuhuang Formula, 0.5 ml each time, at 12 hours intervals, for a total of 4 times after modelling. Sepsis group and sham surgery group were given 0.5 ml of purified water orally. At 48 hours after modeling, the transcriptome sequencing was used to explore the differential gene expression in the effects of Shenfuhuang Formula on the brain regions of septic mice, and real-time PCR and ELISA were later used to further validate the differential gene and proteins expression. ResultsA total of 4605 genes were differentially expressed in Shenfuhuang group compared with sepsis group, of which 2353 genes were up-regulated and 2252 genes were down-regulated. According to the results of previous publications, six key genes were screened, including serine/threonine-protein kinase (Nek1), myelin-associated glycoprotein (Mag), endothelial cell-specific tyrosine kinase receptor (Tek), a disintegrin and metalloproteinase with thrombospondin motifs 20 (Adamts20), lymphocyte antigen 86 (Ly86), and E3 ubiquitin-protein ligase (Traip). Further genetic and protein validation revealed that, compared to the sham surgery group, the mRNA levels and corresponding protein levels of Nek1, Mag, Tek, Adamts20, Ly86, and Traip in the brain tissue of septic mice significantly reduced (P<0.05). In comparison to the sepsis group, Shenfuhuang group showed significantly increased mRNA levels and corresponding protein levels of Nek1, Mag, Tek, Adamts20, Ly86, and Traip (P<0.05). ConclusionThe potential therapeutic targets of Shenfuhuang Formula for treating sepsis-associated encephalopathy may be related to the Nek1, Mag, Tek, Adamts20, Ly86, and Traip genes and their encoded proteins.
6.Comparison of SEC-RI-MALLS and SEC-RID methods for determining molecular weight and molecular weight distribution of PLGA
WANG Baocheng ; ZHANG Xiaoyan ; ZHOU Xiaohua ; ZHAO Xun ; MA Congyu ; GAO Zhengsong ; SHI Haiwei ; YUAN Yaozuo ; HANG Taijun
Drug Standards of China 2025;26(1):110-116
Objective: To establish a method for determining the molecular weight and molecular weight distribution of Poly(Lactide-co-Glycolide Acid) (PLGA) using Size Exclusion Chromatography-Refractive Index-Multiangle Laser Light Scattering (SEC-RI-MALLS) and Size Exclusion Chromatography-Refractive Index (SEC-RID), and to compare the results obtained from these two methods.
Methods: For SEC-RI-MALLS, tetrahydrofuran was used as the mobile phase, Shodex GPC KF-803L was employed as the chromatographic column with a flow rate of 1 mL·min-1, column temperature at 30 ℃, and an injection volume of 100 μL. For SEC-RID, tetrahydrofuran was also used as the mobile phase, Agilent PLgel 5 μm MIXD-D was used as the chromatographic column with a flow rate of 1 mL·min-1, column temperature at 30 ℃, differential detector temperature at 35 ℃, and an injection volume of 20 μL. The molecular weight and molecular weight distribution were calculated using Agilent’s GPC software. The newly established methods were validated methodologically, and the molecular weight and molecular weight distribution of 13 batches of samples were determined.
Results: The precision, accuracy, stability, and repeatability tests for SEC-RI-MALLS showed RSD values of 1.35%, 1.58%, 1.53%, and 1.26%, respectively. The SEC-RID method exhibited good linearity (r=0.999 9), with RSD values for precision, accuracy, stability, and repeatability tests (n=6) of 2.05%, 1.62%, 1.30%, and 2.97%, respectively. The results obtained from SEC-RI-MALLS were lower than those from SEC-RID, and the molecular weight distribution coefficient was smaller, but the results from the paired T-test performed with the value measured by SEC-RID method and the value measured by SEC-RI-MALLS method multiplied a conversion coefficient of 1.5 showed no significant difference between the two methods.
Conclusion: Both methods are stable and reliable, and can be used for the determination of PLGA molecular weight and molecular weight distribution based on the specific situations.
7.Ca2+ Release From The Endoplasmic Reticulum Mediates Electric Field Guided Cell Migration of Dictyostelium discoideum
Yi-Fan WANG ; Shu-Qin YUAN ; Run-Chi GAO ; San-Jun ZHAO
Progress in Biochemistry and Biophysics 2025;52(5):1252-1263
ObjectiveAs a second messenger in intracellular signal transduction, Ca2+ plays an important role in cell migration. Previous studies have demonstrated that extracellular Ca2+ influx can promote electric field-guided cell migration, known as electrotaxis. However, the effect of intracellular Ca2+ flow on electrotaxis is unclear. Therefore, in this study, we investigate the effect of Ca2+ flux on the electrotaxis of Dictyostelium discoideum. MethodsThe electrotaxis of Dictyostelium discoideum was investigated by applying a direct current (DC) electric field. Cell migration was recorded using a real-time imaging system. Calcium channel inhibitors, the extracellular Ca2+ chelator EGTA, Ca2+-free DB buffer, and caffeine were applied to investigate the impact of intra- and extracellular Ca2+ flow on electrotaxis. The involvement of G proteins and ERK2 in directed cell migration mediated by endoplasmic reticulum Ca2+ release was explored using mutants. ResultsDictyostelium discoideum migrated toward the cathode in the electric field in a voltage-dependent manner. The intracellular Ca2+ concentration of the cells was significantly increased in the electric field. Inhibition of both extracellular Ca2+ influx and intracellular Ca2+ release suppressed cell electrotaxis migration. Inhibition of endoplasmic reticulum Ca2+ release induced by caffeine significantly impaired the electrotaxis of Dictyostelium discoideum. Deletion of Gα2, Gβ, Gγ, and Erk2 notably reduced the electrotaxis of the cells. Enhancing Ca2+ release mediated by caffeine restored the electrotaxis of the Gα2-, Gβ -, and Erk2- mutant cells partially or completely, but did not restore electrotaxis in the Gγ- mutant cells. ConclusionCa2+ release from the endoplasmic reticulum regulates electrotaxis migration in Dictyostelium discoideum and is involved in the regulation of cell electrotaxis by G proteins and ERK2.
8.Establishment and Evaluation of Rat Model of Acute Myocardial Infarction in Coronary Heart Disease with Qi and Yin Deficiency Syndrome Based on Sleep Deprivation Combined with Coronary Artery Ligation
Yali SHI ; Yunxiao GAO ; Qiuyan ZHANG ; Yue YUAN ; Xiaoxiao CHEN ; Longxiao HU ; Junguo REN ; Jianxun LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):30-40
ObjectiveTo explore the construction and evaluation methods of a rat model of acute myocardial infarction(AMI) with Qi and Yin deficiency syndrome established by sleep deprivation combined with coronary artery ligation. MethodsThirty-six SD rats were randomly divided into a normal group(n=6), a myocardial infarction group(model A group, n=10), an acute sleep deprivation+myocardial infarction group(model B group, n=10), and a chronic sleep deprivation+myocardial infarction group(model C group, n=10) according to body weight. Rats in the normal group were not treated, rats in the model A group underwent only ligation of the left anterior descending coronary artery, rats in the model B group were sleep deprived for 96 h and then underwent ligation of the left anterior descending coronary artery, and rats in the model C group were sleep deprived for an additional 48 h each week with a 24 h rest period as one cycle for three weeks on the basis of the model B group. After coronary artery ligation in the model C group, the first week was defined as the starting point of the first sleep deprivation cycle, and indexes were tested weekly for rats in each group for 3 weeks. Electrocardiogram was used to determine the ligation of the left anterior descending coronary artery in rats, and small animal echocardiography was used to evaluate the cardiac function. The levels of serum creatine kinase(CK), creatine kinase isoenzyme(CK-MB), lactate dehydrogenase(LDH), cardiac troponin T(cTnT), interleukin-18(IL-18), and tumor necrosis factor-α(TNF-α) were detected by biochemical assays, and hematoxylin-eosin(HE) staining was used to evaluate the pathological changes of myocardial tissue in rats. The syndrome indicators of Qi and Yin deficiency were evaluated by general state and body weight, grip strength, facial temperature, paw temperature, rectal temperature, salivary flow rate, open field test, tongue color[red(R), green(G), and blue(B)] values, pulse amplitude changes, and enzyme-linked immunosorbent assay(ELISA) for the detection of expression levels of cyclic adenosine monophosphate(cAMP), cyclic guanosine monophosphate(cGMP), rat serum corticotropin-releasing factor(CRF), adrenocorticotropic hormone(ACTH), triiodothyronine(T3), tetraiodothyronine(T4), and corticosterone(CORT) in serum. ResultsIn terms of disease indicators, compared with the normal group, the ST segment of the electrocardiogram in each model group was significantly elevated, the echocardiographic parameters were decreased, the contents of myocardial enzymes and inflammatory factors were increased(P<0.01), and the myocardial tissue in the infarcted area was significantly damaged. In terms of syndrome indicators, compared with the normal group, the body weight of rats in the model B and C groups decreased at each time point, the grip strength of each model group decreased, the total distance traveled and the number of entries into the center in the open field test decreased, the immobility time increased, the facial and rectal temperatures of rats in the model B and C groups increased, the salivary flow rate of each model group decreased, the tongue color was bright red or light, the tongue body was dry or smooth like a mirror, lacking of moisture sensation, the R, G and B values of the tongue surface increased, the pulse amplitude changes decreased, and the contents of T3 and T4 increased, while the expressions of cAMP, CRF, ACTH and CORT in the model B and C groups increased(P<0.05, P<0.01). ConclusionContinuous sleep deprivation for 96 h in a multi-platform method combined with coronary artery ligation can construct a rat model of AMI with Qi and Yin deficiency syndrome, and the syndrome manifestations can be maintained for 3 weeks.
9.Establishment and Evaluation of Rat Model of Myocardial Ischemia-reperfusion Injury with Phlegm and Blood Stasis Blocking Collaterals Syndrome Based on Metabolomics
Longxiao HU ; Jiabei GAO ; Weihao MA ; Jieming LU ; Yunxiao GAO ; Yue YUAN ; Qiuyan ZHANG ; Xiaoxiao CHEN ; Yali SHI ; Jianxun LIU ; Junguo REN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):41-51
ObjectiveTo explore the feasibility, evaluation methods and metabolic differences of high-fat diet(HFD) combined with myocardial ischemia-reperfusion injury(MIRI) to establish a rat model of myocardial ischemia-reperfusion with phlegm and blood stasis blocking collaterals syndrome(PBSBCS). MethodsThirty-two SD rats were randomly divided into the sham operation, HFD, MIRI, and MIRI+HFD groups. Rats in the sham operation and MIRI groups were fed a standard diet(regular chow), while the HFD and MIRI+HFD groups received a HFD for 10 weeks. Rats in the MIRI and MIRI+HFD groups underwent myocardial ischemia-reperfusion surgery, while the sham operation group underwent only thread placement without ligation. Cardiac function was assessed via small-animal echocardiography, including left ventricular ejection fraction(EF), left ventricular fractional shortening(FS), cardiac output(CO), and stroke volume(SV). Serum levels of creatine kinase(CK), CK-MB, triglyceride(TG), total cholesterol(TC), high-density lipoprotein cholesterol(HDL-C), low-density lipoprotein cholesterol(LDL-C), lactate dehydrogenase(LDH), endothelin-1(ET-1), endothelial nitric oxide synthase(eNOS), tumor necrosis factor-α(TNF-α), interleukin-18(IL-18), oxidized LDL(ox-LDL), and cardiac troponin T(cTnT) were measured by biochemical assays and enzyme-linked immunosorbent assay(ELISA). Myocardial histopathology was evaluated via hematoxylin-eosin(HE) staining, while myocardial infarction and no-reflow area were assessed using 2,3,5-triphenyltetrazolium chloride(TTC), Evans blue, and thioflavin staining. Changes in syndrome characteristics[body weight, tongue surface red-green-blue [RGB] values, and pulse amplitude] of PBSBCS were recorded. Serum differential metabolites were analyzed by ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS). ResultsCompared with the sham operation group, the HFD and MIRI+HFD groups showed significant increases in body weight(P<0.01), RGB values and pulse amplitude decreased in the HFD, MIRI and MIRI+HFD groups, TC, TG, LDL-C and ox-LDL levels increased in the HFD and MIRI+HFD groups, while HDL-C decreased. Blood perfusion peak time and myocardial no-reflow area increased, serum eNOS level decreased, and CK-MB, LDH, and cTnT activities increased in the HFD, MIRI and MIRI+HFD groups(P<0.05, P<0.01). Whole blood viscosity was increased in the HFD group at medium shear rate, and in the MIRI and MIRI+HFD groups at low, medium and high shear rates(P<0.05, P<0.01). Platelet aggregation rate increased in the MIRI and MIRI+HFD groups, accompanied by elevated ET-1, TNF-α, and IL-18 levels, reduced cardiac function indices, expanded myocardial no-reflow and infarction areas, and increased serum CK, CK-MB, LDH, and cTnT activities(P<0.05, P<0.01). Compared with the MIRI group, the HFD and MIRI+HFD groups showed significant increase in body weight, TC, TG, LDL-C and ox-LDL levels, and significant decrease in HDL-C content(P<0.01). The MIRI+HFD group showed decrease in RGB values and pulse amplitude, and an increase in whole blood viscosity, platelet aggregation, blood perfusion peak time, myocardial no-reflow and infarction areas, elevated ET-1, TNF-α and IL-18 levels, decreased eNOS content, EF and SV, increased serum CK, CK-MB and cTnT activities, and worsened myocardial pathology(P<0.05). Compared with the HFD group, the MIRI+HFD group showed similar aggravated trends(P<0.05, P<0.01). Metabolomics results showed that 34 potential biomarkers involving 13 common metabolic pathways were identified in the MIRI+HFD group compared with the sham operation group. ConclusionThe MIRI group resembles blood stasis syndrome in hemodynamics and myocardial injury, and the HFD group mirrors phlegm-turbidity syndrome in lipid profiles and tongue characteristics. While the MIRI+HFD group aligns with PBSBCS in comprehensive indices, effectively simulating clinical features of coronary heart disease(CHD), which can be used for the evaluation of the pathological mechanism and pharmacodynamics of CHD with PBSBCS.
10.Establishment and Evaluation of Mouse Model of Ischemic Heart Disease with Qi and Yin Deficiency Syndrome Based on Proteomics
Qiuyan ZHANG ; Ying LI ; Yunxiao GAO ; Longxiao HU ; Yue YUAN ; Xiaoxiao CHEN ; Yali SHI ; Junguo REN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):52-61
ObjectiveTo explore the optimal construction method and the biological basis for establishing a mouse model of ischemic heart disease(IHD) with Qi and Yin deficiency syndrome by intraperitoneal injection of isoproterenol(ISO). MethodsA total of 144 male C57BL/6J mice were randomly assigned into three normal groups and nine model groups according to body mass, with 12 mice in each group. The model groups 1, 4, and 7 were administered ISO via intraperitoneal injection at a dose of 5 mg·kg-1·d-1 for four consecutive days, the model groups 2, 5, and 8 received ISO at a dose of 10 mg·kg-1·d-1 for seven consecutive days, while the model groups 3, 6, and 9 were given ISO at a dose of 15 mg·kg-1·d-1 for 14 consecutive days. The normal groups were administered an equivalent volume of normal saline via intraperitoneal injection. After the modeling process, body mass, 24-hour food and water intake, grip strength, and spontaneous activity of the mice were measured. Cardiac function was assessed using echocardiography, the serum levels of norepinephrine(NE), cyclic adenosine monophosphate(cAMP), and cyclic guanosine monophosphate(cGMP) were determined via enzyme-linked immunosorbent assay(ELISA). The content of adenosine triphosphate(ATP) in myocardial tissue was measured by biochemical analysis, while histopathological changes in myocardial tissue were observed via hematoxylin-eosin(HE) staining. An orthogonal experimental design was applied for intuitive analysis and variance analysis to screen the optimal modeling conditions of the mouse model of IHD with Qi and Yin deficiency syndrome. A data-dependent acquisition(DDA) proteomic technique was employed to quantitatively detect differentially expressed proteins in myocardial tissue between the optimal model group and the normal group. And bioinformatics analysis was conducted to explore the potential biological mechanisms underlying the Qi and Yin deficiency model of IHD. ResultsOrthogonal results showed that the injection cycle had a great influence on model establishment, and the optimal modeling condition was identified as intraperitoneal injection of ISO at 15 mg·kg-1·d-1 for 14 consecutive days. Under this condition, compared with the normal group, the model group demonstrated significant reductions in body mass, food intake, water intake, grip strength, total distance and average speed of exercise, ejection fraction(EF), fractional shortening(FS), serum levels of NE and cGMP, and myocardial ATP content(P<0.01), while immobility time, cAMP level, and the cAMP/cGMP value were significantly increased(P<0.05, P<0.01). HE staining results revealed that myocardial tissue in the model group had disordered cell arrangement, inflammatory cell infiltration, myocardial fiber rupture, and fibrous tissue proliferation. Proteomic analysis identified 141 differentially expressed proteins in the model group compared with the normal group, with 52 up-regulated and 89 down-regulated. Gene Ontology(GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis indicated that the cellular components(CC) were mainly related to mitochondria and the inner mitochondrial membrane, the biological processes(BP) were associated with complement activation, platelet activation, and responses to metal ions, suggesting that the potential functional pathways involved the complement and coagulation cascade, as well as porphyrin metabolism. ConclusionContinuous intraperitoneal injection of ISO at a dose of 15 mg·kg-1 for 14 days successfully establishes a mouse model of IHD with Qi and Yin deficiency syndrome, and the underlying mechanisms may be related to the regulation of iron ions by complement C3, C5 and Cp, and plays a role in the regulation through the BP of complement activation, platelet activation, and responses to metal ions, and the signaling pathways of the complement and coagulation cascade and porphyrin metabolism.

Result Analysis
Print
Save
E-mail