1.Effect of diazepam on the oxytocin induced contraction of the isolated rat uterus.
Yoon Kee PARK ; Sung Ho LEE ; Oh Cheol KWON ; Jeoung Hee HA ; Kwang Youn LEE ; Won Joon KIM
Yeungnam University Journal of Medicine 1992;9(2):359-381
This study was designed to investigate the effect of diazepam on the spontaneous contraction and oxytocin induced contraction of the isolated rat uterus. Female rat (Sprague-Dawley) pretreated with oophorectomy and 4 days administration of estrogen. Weighing about 200 g, was sacrificed by cervical dislocation, and the uteruses were isolated. A longitudinal muscle strip was placed in temperature controlled (37℃) muscle chamber containing Locke's solution and myographied isometrically. Diazepam inhibited the spontaneous contraction and oxytocin induced contraction of the isolated rat uterus in a concentration-dependent manner. GABA, muscimol, a GABA A receptor agonist, bicuculline, a competitive GABA A receptor antagonist, picrotoxin, a non competitive GABA A receptor antagonist, baclofen, a GABA B receptor agonist, and delta-aminovaleric acid, a GABA B receptor antagonist, did not affect on the spontaneous and oxytocin induced contraction of the isolated rat uterus. The inhibitory actions of diazepam on the spontaneous and oxytocin induced contraction were not affected by all the GABA receptor agonists and antagonists, but exceptionally potentiated by bicuculline. This potentiation-effect by bicuculline was not antagonized by muscumol. In normal calcium PSS, addition of calcium restored the spontaneous contraction preinhibited by diazepam and recovered the contractile of oxtrocin preinhibited by diazepam. A23187, a calcium inophore, enhanced the restoration of both the spontaneous and oxytocin induced contraction by addition of calcium. In calcium-free PSS, diazepam suppressed the restoration of spontaneous motility by addition of calcium but allowed the recovery of spontaneous motility to a considerable extent. Diazepam could not inhibit some development of contractility by oxytocin in calcium-free PSS, but inhibited the increase in contractility by subsequent addition of calcium. These results suggest that the inhibitory action of diazepam on the rat uterine motility does not depend on or related to GABA receptors and that diazepam inhibits the extracellular calcium influx to suppress the spontaneous and oxytocin induced contractilities.
Animals
;
Baclofen
;
Bicuculline
;
Calcimycin
;
Calcium
;
Diazepam*
;
Dislocations
;
Estrogens
;
Female
;
GABA Agonists
;
GABA-A Receptor Agonists
;
GABA-A Receptor Antagonists
;
GABA-B Receptor Agonists
;
GABA-B Receptor Antagonists
;
gamma-Aminobutyric Acid
;
Humans
;
Muscimol
;
Ovariectomy
;
Oxytocin*
;
Picrotoxin
;
Rats*
;
Receptors, GABA
;
Uterus*
2.Spinal and Peripheral GABA-A and B Receptor Agonists for the Alleviation of Mechanical Hypersensitivity following Compressive Nerve Injury in the Rat.
Young Hoon JEON ; Duck Mi YOON ; Taick Sang NAM ; Joong Woo LEEM ; Gwang Se PAIK
The Korean Journal of Pain 2006;19(1):22-32
BACKGROUND: This study was conducted to investigate the roles of the spinal and peripheral gamma-aminobutyric acid (GABA)-ergic systems for the mechanical hypersensitivity produced by chronic compression of the dorsal root ganglion (CCD). METHODS: CCD was performed at the left 5th lumbar dorsal root ganglion. The paw withdrawal threshold (PWT) to von Frey stimuli was measured. The mechanical responsiveness of the lumbar dorsal horn neurons was examined. GABAergic drugs were delivered with intrathecal (i.t.) or intraplantar (i.pl.) injection or by topical application onto the spinal cord. RESULTS: CCD produced mechanical hypersensitivity, which was evidenced by the decrease of the PWT, and it lasting for 10 weeks. For the rats showing mechanical hypersensitivity, the mechanical responsiveness of the lumbar dorsal horn neurons was enhanced. A similar increase was observed with the normal lumbar dorsal horn neurons when the GABA-A receptor antagonist bicuculline was topically applied. An i.t. injection of GABA-A or GABA-B receptor agonist, muscimol or baclofen, alleviated the CCD-induced hypersensitivity. Topical application of same drugs attenuated the CCD-induced enhanced mechanical responsiveness of the lumbar dorsal horn neurons. CCD-induced hypersensitivity was also improved by low-dose muscimol applied (i.pl.) into the affected hind paw, whereas no effects could be observed with high-dose muscimol or baclofen. CONCLUSIONS: The results suggest that the neuropathic pain associated with compression of the dorsal root ganglion is caused by hyperexcitability of the dorsal horn neurons due to a loss of spinal GABAergic inhibition. Peripheral application of low-dose GABA-A receptor agonist can be useful to treat this pain.
Animals
;
Back Pain
;
Baclofen
;
Bicuculline
;
GABA-A Receptor Agonists
;
GABA-A Receptor Antagonists
;
GABA-B Receptor Agonists
;
gamma-Aminobutyric Acid
;
Ganglia, Spinal
;
Hyperalgesia
;
Hypersensitivity*
;
Muscimol
;
Neuralgia
;
Posterior Horn Cells
;
Rats*
;
Receptors, GABA
;
Spinal Cord
3.Effect of GABA on the contratility of small intestine isolated from rat.
Joon Young HUH ; Oh Cheol KWON ; Jeoung Hee HA ; Kwang Youn LEE ; Won Joon KIM
Yeungnam University Journal of Medicine 1991;8(2):95-105
This study was designed to investigate the effect of GABA and related substances on the spontaneous contraction of rat small intestine. The rats (Sprague-Dawley), weighing 200-250g, were sacrificed by cervical dislocation, and the small intestine was isolated. Longitudinal muscle strips from duodenum, jejunum and ileum were suspended in Biancani's isolated muscle chambers and myographied isometrically. GABA and muscimol, a GABA A receptor agonist relaxed the duodenum and jejunum significantly, but baclofen-induced relaxation in those muscle strips negligible. The effectiveness of GABA and muscimol in various regions were the greatest on duodenum, and greater on jejunum than on ileum The effect of GABA and muscimol was antagonized by bicuculline, a competitive GABA A receptor antagonist and picrotoxin, a noncompetitive GABA A receptor antagonist. Duodenal relaxation induced by GABA and muscimol was unaffected by hexamethonium, but was prevented by tetrodotoxin. These results suggest that GABA inhibit the contractility of smooth muscle with distinct regional difference of efficacy, and the site of inhibitory action is the GABA A receptor existing at the presynaptic membrane of postganglionic excitatory nerves.
Animals
;
Bicuculline
;
Dislocations
;
Duodenum
;
GABA-A Receptor Agonists
;
GABA-A Receptor Antagonists
;
gamma-Aminobutyric Acid*
;
Hexamethonium
;
Ileum
;
Intestine, Small*
;
Jejunum
;
Membranes
;
Muscimol
;
Muscle, Smooth
;
Picrotoxin
;
Rats*
;
Receptors, GABA-A
;
Relaxation
;
Tetrodotoxin
4.The influence of GABAA receptor on the analgesic action of intrathecally injected oxysophoridine.
Guang YANG ; Jin-xian GAO ; Zheng-hong YI ; Lin YAN ; Yuan-Xu JIANG
Acta Pharmaceutica Sinica 2011;46(5):534-538
.This study is to investigate the analgesic effect produced by intrathecal injection (ith) of oxysophoridine (OSR) and the mechanism of GABAA receptor. Warm water tail-flick test was used to detect the analgesic effect of OSR (12.5, 6.25, and 3.13 mg.kg-1 ith) and to observe the influence of GABA (gamma aminobutyric acid) agonist or antagonist on the analgesic effect of OSR in mice. Immunohistochemistry method were used to detect the influence of OSR (12.5 mg.kg-1, ith) on the GABAARalpha1 protein expression in spinal cord. The results obtained covers that OSR (12.5 and 6.25 mg.kg-, ith) alleviates pain significantly with the warm water tail-flick test (P<0.05, P<0.01), the rate of pain threshold increases by 68.45%; GABA and muscimol (MUS) produces analgesic synergism together with the OSR, picrotoxin (PTX) and bicuculline (BIC) antagonize the analgesic effect of OSR; OSR (12.5 mg.kg-1, ith) significantly increase the positive number of GABAARalpha1 nerve cell in spinal cord (P<0.01) and significantly decrease the average grey levels (P<0.01). In conclusion, OSR intrathecal injection has significant analgesic effect. And GABAA receptor in spinal cord is involved in the analgesic mechanism.
Alkaloids
;
administration & dosage
;
pharmacology
;
Analgesics
;
administration & dosage
;
pharmacology
;
Animals
;
Bicuculline
;
pharmacology
;
Female
;
GABA-A Receptor Agonists
;
pharmacology
;
GABA-A Receptor Antagonists
;
pharmacology
;
Injections, Spinal
;
Male
;
Mice
;
Muscimol
;
pharmacology
;
Pain Threshold
;
drug effects
;
Picrotoxin
;
pharmacology
;
Random Allocation
;
Receptors, GABA-A
;
metabolism
;
Spinal Cord
;
metabolism
;
gamma-Aminobutyric Acid
;
pharmacology
5.GABA Receptor Activity Suppresses the Transition from Inter-ictal to Ictal Epileptiform Discharges in Juvenile Mouse Hippocampus.
Yan-Yan CHANG ; Xin-Wei GONG ; Hai-Qing GONG ; Pei-Ji LIANG ; Pu-Ming ZHANG ; Qin-Chi LU
Neuroscience Bulletin 2018;34(6):1007-1016
Exploring the transition from inter-ictal to ictal epileptiform discharges (IDs) and how GABA receptor-mediated action affects the onset of IDs will enrich our understanding of epileptogenesis and epilepsy treatment. We used Mg-free artificial cerebrospinal fluid (ACSF) to induce epileptiform discharges in juvenile mouse hippocampal slices and used a micro-electrode array to record the discharges. After the slices were exposed to Mg-free ACSF for 10 min-20 min, synchronous recurrent seizure-like events were recorded across the slices, and each event evolved from inter-ictal epileptiform discharges (IIDs) to pre-ictal epileptiform discharges (PIDs), and then to IDs. During the transition from IIDs to PIDs, the duration of discharges increased and the inter-discharge interval decreased. After adding 3 μmol/L of the GABA receptor agonist muscimol, PIDs and IDs disappeared, and IIDs remained. Further, the application of 10 μmol/L muscimol abolished all the epileptiform discharges. When the GABA receptor antagonist bicuculline was applied at 10 μmol/L, IIDs and PIDs disappeared, and IDs remained at decreased intervals. These results indicated that there are dynamic changes in the hippocampal network preceding the onset of IDs, and GABA receptor activity suppresses the transition from IIDs to IDs in juvenile mouse hippocampus.
Animals
;
Animals, Newborn
;
Bicuculline
;
pharmacology
;
Disease Models, Animal
;
Epilepsy
;
pathology
;
GABA-A Receptor Agonists
;
pharmacology
;
GABA-A Receptor Antagonists
;
therapeutic use
;
Hippocampus
;
drug effects
;
metabolism
;
physiopathology
;
In Vitro Techniques
;
Magnesium
;
metabolism
;
pharmacology
;
Male
;
Membrane Potentials
;
drug effects
;
Mice
;
Mice, Inbred C57BL
;
Muscimol
;
pharmacology
;
Nerve Net
;
drug effects
;
Receptors, GABA-A
;
metabolism
6.Etifoxine for Pain Patients with Anxiety.
The Korean Journal of Pain 2015;28(1):4-10
Etifoxine (etafenoxine, Stresam(R)) is a non-benzodiazepine anxiolytic with an anticonvulsant effect. It was developed in the 1960s for anxiety disorders and is currently being studied for its ability to promote peripheral nerve healing and to treat chemotherapy-induced pain. In addition to being mediated by GABA(A)alpha2 receptors like benzodiazepines, etifoxine appears to produce anxiolytic effects directly by binding to beta2 or beta3 subunits of the GABA(A) receptor complex. It also modulates GABA(A) receptors indirectly via stimulation of neurosteroid production after etifoxine binds to the 18 kDa translocator protein (TSPO) of the outer mitochondrial membrane in the central and peripheral nervous systems, previously known as the peripheral benzodiazepine receptor (PBR). Therefore, the effects of etifoxine are not completely reversed by the benzodiazepine antagonist flumazenil. Etifoxine is used for various emotional and bodily reactions followed by anxiety. It is contraindicated in situations such as shock, severely impaired liver or kidney function, and severe respiratory failure. The average dosage is 150 mg per day for no more than 12 weeks. The most common adverse effect is drowsiness at the initial stage. It does not usually cause any withdrawal syndromes. In conclusion, etifoxine shows less adverse effects of anterograde amnesia, sedation, impaired psychomotor performance, and withdrawal syndromes than those of benzodiazepines. It potentiates GABA(A) receptor-function by a direct allosteric effect and by an indirect mechanism involving the activation of TSPO. It seems promising that non-benzodiazepine anxiolytics including etifoxine will replenish shortcomings of benzodiazepines and selective serotonin reuptake inhibitors according to animated studies related to TSPO.
Amnesia, Anterograde
;
Anti-Anxiety Agents
;
Anticonvulsants
;
Anxiety Disorders
;
Anxiety*
;
Benzodiazepines
;
Flumazenil
;
Humans
;
Kidney
;
Liver
;
Mitochondrial Membranes
;
Nerve Regeneration
;
Neuralgia
;
Neurotransmitter Agents
;
Peripheral Nerves
;
Peripheral Nervous System
;
Psychomotor Performance
;
Receptors, GABA-A
;
Respiratory Insufficiency
;
Serotonin Uptake Inhibitors
;
Shock
;
Sleep Stages
7.Intra-nucleus accumbens shell injection of baclofen blocks the reconsolidation of conditioned place preference in morphine-addicted mice.
Ruo-Chen WANG ; Li-Fei XIAO ; Chun ZHANG ; Tao SUN ; Kui-Sheng SUN
Acta Physiologica Sinica 2020;72(2):255-261
Preclinical studies suggest that the GABA receptor is a potential target for treatment of substance use disorders. Baclofen (BLF), a prototypical GABA receptor agonist, is the only specific GABA receptor agonist available for application in clinical addiction treatment. The nucleus accumbens shell (AcbSh) is a key node in the circuit that controls reward-directed behavior. However, the relationship between GABA receptors in the AcbSh and memory reconsolidation was unclear. The aim of this study was to investigate the effect of intra-AcbSh injection of BLF on the reconsolidation of morphine reward memory. Male C57BL/6J mice were used to establish morphine conditioned place preference (CPP) model and carry out morphine reward memory retrieval and activation experiment. The effects of intra-AcbSh injection of BLF on morphine-induced CPP, reinstatement of CPP and locomotor activity were observed after environmental cues activating morphine reward memory. The results showed that intra-AcbSh injection of BLF (0.06 nmol/0.2 μL/side or 0.12 nmol/0.2 μL/side), rather than vehicle or BLF (0.01 nmol/0.2 μL/side), following morphine reward memory retrieval abolished morphine-induced CPP by disrupting its reconsolidation in mice. Moreover, this effect persisted for more than 14 days, which was not reversed by a morphine priming injection. Furthermore, intra-AcbSh injection of BLF without morphine reward memory retrieval had no effect on morphine-associated reward memory. Interestingly, administration of BLF into the AcbSh had no effect on the locomotor activity of mice during testing phase. Based on these results, we concluded that intra-AcbSh injection of BLF following morphine reward memory could erase morphine-induced CPP by disrupting its reconsolidation. Activating GABA receptor in AcbSh during drug memory reconsolidation may be a potential approach to prevent drug relapse.
Animals
;
Baclofen
;
administration & dosage
;
Conditioning, Classical
;
GABA-B Receptor Agonists
;
administration & dosage
;
Locomotion
;
Male
;
Memory
;
Mice
;
Mice, Inbred C57BL
;
Morphine
;
Nucleus Accumbens
;
drug effects
;
Opioid-Related Disorders
;
Reward
8.Interhemispheric Modulation on Afferent Sensory Transmission to the Ventral Posterior Medial Thalamus by Contralateral Primary Somatosensory Cortex.
Sung Cherl JUNG ; In Sun CHOI ; Jin Hwa CHO ; Ji Hyun KIM ; Yong Chul BAE ; Maan Gee LEE ; Hyung Cheul SHIN ; Byung Ju CHOI
The Korean Journal of Physiology and Pharmacology 2004;8(3):129-132
Single unit responses of the ventral posterior medial (VPM) thalamic neurons to stimulation were monitored in anesthetized rats during activation of contralateral primary somatosensory (SI) cortex by GABA antagonist. The temporal changes of afferent sensory transmission were quantitatively analyzed by poststimulus time histogram (PSTH). Mainly, afferent sensory transmission to VPM thalamus was facilitated (15 neurons of total 23) by GABA antagonist (bicuculline) applied to contralateral cortex, while 7 neurons were suppressed. However, when ipsilateral cortex was inactivated by GABA agonist, musimol, there was significant suppression of afferent sensory transmission of VPM thalamus. This suppressed responsiveness by ipsilateral musimol was not affected by bicuculline applied to contralateral cortex. These results suggest that afferent transmission to VPM thalamus may be subjected to the interhemispheric modulation via ipsilateral cortex during inactivation of GABAergic neurons in contralateral SI cortex.
Animals
;
Bicuculline
;
GABA Agonists
;
GABA Antagonists
;
GABAergic Neurons
;
gamma-Aminobutyric Acid
;
Neurons
;
Rats
;
Somatosensory Cortex*
;
Thalamus*
9.Current Issues on Gastroesophageal Reflux Disease.
Jie Hyun KIM ; Beom Jin KIM ; Sang Wook KIM ; Sung Eun KIM ; Yeon Soo KIM ; Hye Young SUNG ; Tae Hoon OH ; In Du JEONG ; Moo In PARK
The Korean Journal of Gastroenterology 2014;64(3):127-132
Gastroesophageal reflux disease (GERD) is one of the most common problems in gastrointestinal disorders. With the increase in our understanding on the pathophysiology of GERD along with the development of proton pump inhibitors, the diagnostic and therapeutic approaches to GERD have changed dramatically over the past decade. However, GERD still poses a problem to many clinicians since the spectrum of the disease has evolved to encompass more challenging presentations such as refractory GERD and extraesophageal manifestations. This has led to significant confusion regarding the optimal approach to these patients. This article aims to discuss current issues on GERD.
Alginates/therapeutic use
;
Endoscopy, Gastrointestinal
;
Esophageal pH Monitoring
;
GABA-B Receptor Agonists/therapeutic use
;
Gastroesophageal Reflux/*diagnosis/drug therapy/pathology
;
Humans
;
Metoclopramide/therapeutic use
;
Proton Pump Inhibitors/therapeutic use
10.Are Spinal GABAergic Elements Related to the Manifestation of Neuropathic Pain in Rat?.
Jaehee LEE ; Seung Keun BACK ; Eun Jeong LIM ; Gyu Chong CHO ; Myung Ah KIM ; Hee Jin KIM ; Min Hee LEE ; Heung Sik NA
The Korean Journal of Physiology and Pharmacology 2010;14(2):59-69
Impairment in spinal inhibition caused by quantitative alteration of GABAergic elements following peripheral nerve injury has been postulated to mediate neuropathic pain. In the present study, we tested whether neuropathic pain could be induced or reversed by pharmacologically modulating spinal GABAergic activity, and whether quantitative alteration of spinal GABAergic elements after peripheral nerve injury was related to the impairment of GABAergic inhibition or neuropathic pain. To these aims, we first analyzed the pain behaviors following the spinal administration of GABA antagonists (1 microgram bicuculline/rat and 5 microgram phaclofen/rat), agonists (1 microgram muscimol/rat and 0.5 microgram baclofen/rat) or GABA transporter (GAT) inhibitors (20 microgram NNC-711/rat and 1 microgram SNAP-5114/rat) into naive or neuropathic animals. Then, using Western blotting, PCR or immunohistochemistry, we compared the quantities of spinal GABA, its synthesizing enzymes (GAD65, 67) and its receptors (GABAA and GABAB) and transporters (GAT-1, and -3) between two groups of rats with different severity of neuropathic pain following partial injury of tail-innervating nerves; the allodynic and non-allodynic groups. Intrathecal administration of GABA antagonists markedly lowered tail-withdrawal threshold in naive animals, and GABA agonists or GAT inhibitors significantly attenuated neuropathic pain in nerve-injured animals. However, any quantitative changes in spinal GABAergic elements were not observed in both the allodynic and non-allodynic groups. These results suggest that although the impairment in spinal GABAergic inhibition may play a role in mediation of neuropathic pain, it is not accomplished by the quantitative change in spinal elements for GABAergic inhibition and therefore these elements are not related to the generation of neuropathic pain following peripheral nerve injury.
Animals
;
Blotting, Western
;
GABA Agonists
;
GABA Antagonists
;
gamma-Aminobutyric Acid
;
Immunohistochemistry
;
Negotiating
;
Neuralgia
;
Peptides
;
Peripheral Nerve Injuries
;
Polymerase Chain Reaction
;
Rats