1.GABAergic neurotransmission in globus pallidus and its involvement in neurologic disorders.
Acta Physiologica Sinica 2004;56(4):427-435
The globus pallidus occupies a critical position in the 'indirect' pathway of the basal ganglia and, as such, plays an important role in the modulation of movement. In recent years, the importance of the globus pallidus in the normal and malfunctioned basal ganglia is emerging. However, the function and operation of various transmitter systems in this nucleus are largely unknown. GABA is the major neurotransmitter involved in the globus pallidus. By means of electrophysiological recording, immunohistochemistry and behavioral studies, new information on the distribution and functions of the GABAergic neurotransmission in the rat globus pallidus has been generated. Morphological studies revealed the existence of GABA(A) receptor, including its benzodiazepine binding site, and GABA(B) receptor in globus pallidus. At subcellular level, GABA(A) receptors are located at the postsynaptic sites of symmetric synapses (putative GABAergic synapses). However, GABA(B) receptors are located at both pre- and postsynaptic sites of symmetric, as well as asymmetric synapses (putative excitatory synapses). Consistent with the morphological results, functional studies showed that activation of GABA(B) receptors in globus pallidus reduces the release of GABA and glutamate by activating presynaptic auto- and heteroreceptors, and hyperpolarizes pallidal neurons by activating postsynaptic receptors. In addition to GABA(B) receptor, activation of GABA(A) receptor benzodiazepine binding site and blockade of GABA uptake change the activity of globus pallidus by prolonging the duration of GABA current. In agreement with the in vitro effect, activation of GABA(B) receptor, GABA(A) receptor benzodiazepine binding site and blockade of GABA uptake cause rotation in behaving animal. Furthermore, the GABA system in the globus pallidus is involved in the etiology of Parkinson's disease and regulation of seizures threshold. It has been demonstrated that the abnormal hypoactivity and synchronized rhythmic discharge of globus pallidus neurons associate with akinesia and resting tremor in parkinsonism. Recent electrophysiological and behavioral studies indicated that the new anti-epileptic drug, tiagabine, is functional in globus pallidus, which may present more information to understand the involvement of globus pallidus in epilepsy.
Animals
;
Basal Ganglia
;
metabolism
;
physiology
;
Epilepsy
;
metabolism
;
Globus Pallidus
;
metabolism
;
physiology
;
Humans
;
Parkinson Disease
;
metabolism
;
Presynaptic Terminals
;
metabolism
;
physiology
;
Receptors, GABA
;
physiology
;
Receptors, GABA-A
;
metabolism
;
physiology
;
Receptors, GABA-B
;
metabolism
;
physiology
;
Synapses
;
metabolism
;
physiology
;
gamma-Aminobutyric Acid
;
metabolism
2.Acquired Pendular Nystagmus with Voluntary Inhibition.
Sueng Han HAN ; Helen LEW ; Young Chul CHOI ; Jong Bok LEE ; Jae Sung KIM
Yonsei Medical Journal 2001;42(3):349-351
This report documents a case of voluntary inhibition of acquired pendular nystagmus after head trauma. A 30-year-old male developed oscillopsia and decreased visual acuity, as well as findings of acquired pendular nystagmus with voluntary inhibition after head trauma. The EOG finding was horizontal 18-20Hz bilateral symmetrical pendular nystagmus in all directions of gaze at near and distant fixation. Nystagmus did not change with 14 Prism Diopter base-out prisms on both eyes, but it was possible to abolish it intentionally. Baclofen and Clonazepam had no effect in improving the patient's symptoms and EOG finding.
Adult
;
Case Report
;
Electrooculography
;
GABA/physiology
;
Human
;
Male
;
Nystagmus, Pathologic/*etiology/physiopathology
;
gamma-Aminobutyric Acid/physiology
3.The response of GABA eliciting the rats outer hair cells during development.
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2015;29(22):1999-2002
OBJECTIVE:
We used electrophysiological methods to study that whether GABA could elicit OHCs outward currents provide evidence for exsitence of GABA-A receptor and investige the relationship between the effect of GABA and the development of OHCs.
METHOD:
We used whole-cell recording OHCs at current-clamp or voltage-clamp to verify the function of GABA receptor on OHCs. Then we counteds the responsive cells vs. total number cells, and according to results to study the relationships between the GABA receptor and development of OHCs.
RESULT:
OHC was elicited outward current or hyperpolarized by GABA and the responsive cells were decreased with development.
CONCLUSION
The result of GABA receptor decreasing with development suggested that the receptor may draw efferents to OHCs or facilitate the MOC-OHC synapse formation.
Animals
;
Electrophysiological Phenomena
;
Hair Cells, Auditory, Outer
;
physiology
;
Patch-Clamp Techniques
;
Rats
;
Receptors, GABA-A
;
physiology
;
gamma-Aminobutyric Acid
;
physiology
4.Inhibitory effect of caffeine on GABA-activated current in acutely isolated rat dorsal root ganglion neurons.
Shao LI ; Jie AN ; Chang-Kai SUN ; Zhi-Wang LI
Acta Physiologica Sinica 2004;56(3):384-388
By means of whole-cell patch clamp technique, the modulatory effect of caffeine on GABA-activated currents (I(GABA)) was investigated in acutely isolated rat dorsal root ganglion (DRG) neurons. The majority of the neurons examined (113/116) were sensitive to GABA (1~1000 micromol/L). GABA activated a concentration-dependent inward current, which manifested obvious desensitization. In 58 out of 108 neurons, caffeine induced a small inward current, while in others no detectable current was observed. After the neurons were treated with caffeine (0.1~100 micromol/L) prior to the application of GABA (100 micromol/L) for 30 s, GABA-activated inward currents were obviously inhibited. Caffeine shifted the GABA dose-response curve downward and decreased the maximum response to 57% without changing K(d) value. These results indicate that the inhibitory effect is non-competitive. The pretreatment with caffeine (10 micromol/L) inhibited I(GABA) which was potentiated by diazepam (1 micromol/L). Intracellular application of H-8 almost completely abolished the inhibitory effect of caffeine on I(GABA). Because GABA can induce primary afferent depolarization (PAD), our results suggest that caffeine may be able to antagonize the effect of presynaptic inhibition of GABA in primary afferent.
Animals
;
Animals, Newborn
;
Caffeine
;
pharmacology
;
Cell Separation
;
Cells, Cultured
;
Electrophysiology
;
GABA Antagonists
;
pharmacology
;
Ganglia, Spinal
;
cytology
;
physiology
;
Neurons
;
cytology
;
physiology
;
Patch-Clamp Techniques
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, GABA-A
;
physiology
;
gamma-Aminobutyric Acid
;
physiology
5.GABA mediaties the inhibitory effect of lateral amygdaloid nucleus stimulation on the acoustic response of neurons in A I cortex: An in vivo microiontophoretic study.
De-Fu HE ; Fu-Jun CHEN ; Shao-Ci ZHOU
Acta Physiologica Sinica 2004;56(3):374-378
Experiments were performed on Sprague Dawley rats with multibarrel microelectrode technique. The effects of acoustic response of A I cortex neurons produced by electrical stimulation of lateral amygdaloid nucleus (LA) and the influence of GABA were observed. Experimental results showed that iontophoretic administration of GABA caused a pronounced inhibition of the electrical activity of A-I neurons. Blockade of GABA(A) with bicuculline (BIC) facilitated the acoustic response. The acoustic response of A-I neurons was inhibited when the LA was stimulated. Iontophoretic application of GABA resulted in a similar inhibitory effect as that of LA stimulation. Blockade of GABA(A) with bicuculline reversed the inhibitory effect of LA stimulation on the acoustic response of A-I neurons. In contrast, application of strychnine, a glycine receptor antagonist, could not reverse the inhibitory effect of LA. Baclofen, a GABA(B) agonist, did not affect the acoustic response of the auditory neurons. These results indicate that GABA is the ultimate transmitter which mediates the LA stimulation-induced inhibition of the acoustic response of A-I neurons in rats, possibly via the GABA(A) receptor.
Acoustic Stimulation
;
Amygdala
;
physiology
;
Animals
;
Baclofen
;
pharmacology
;
Bicuculline
;
pharmacology
;
Cerebral Cortex
;
physiology
;
Electric Stimulation
;
Evoked Potentials, Auditory
;
physiology
;
GABA Agonists
;
pharmacology
;
GABA Antagonists
;
pharmacology
;
Iontophoresis
;
methods
;
Male
;
Microelectrodes
;
Neurons
;
physiology
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, GABA-A
;
physiology
;
gamma-Aminobutyric Acid
;
physiology
6.The role of melatonin receptor and GABAA receptor in the sleeping time prolonged by melatonin in mice.
Fang WANG ; Dan ZOU ; Jing-Cai LI ; Chi HONG ; Li-Bin CHEN ; Xia CHEN
Chinese Journal of Applied Physiology 2003;19(4):402-405
AIMTo observe the role of melatonin receptor and GABAA receptor in sleeping time prolonged by melatonin in mice.
METHODSThe absence of the righting reflex was considered as the sleep onset and the duration of the loss of the righting reflex was recorded as the sleeping time. The effects of receptor agonist and antagonist on hypnotic activity of melatonin were studied in the paper.
RESULTSPrazosin hydrochloride, the blocker of melatonin 3 receptor, didn't affect the sleeping time prolonged by melatonin in mice. GABA, the endogenous agonist of GABA receptor, significantly potentiated the hypnotic activity of melatonin. When picrotoxin, the ligand of picrotoxin site on GABAA receptor, used together with melatonin, it significantly antagonized the sleeping time prolonged by melatonin, however, bicuculline, the specific antagonist of GABA binding site in GABAA receptor, didn't affect the hypnotic activity of melatonin in mice.
CONCLUSIONMelatonin does not exhibit its potentiation sleeping time in mice through melatonin 3 receptor. Hypnotic activity of melatonin may be mediated through picrotoxin site on GABAA receptor.
Animals ; Bicuculline ; pharmacology ; Male ; Melatonin ; physiology ; Mice ; Mice, Inbred Strains ; Picrotoxin ; pharmacology ; Prazosin ; pharmacology ; Receptors, GABA-A ; physiology ; Receptors, Melatonin ; physiology ; Sleep ; physiology
7.Activation of γ-aminobutyric Acid (A) Receptor Protects Hippocampus from Intense Exercise-induced Synapses Damage and Apoptosis in Rats.
Yi DING ; Lan XIE ; Cun-Qing CHANG ; Zhi-Min CHEN ; Hua AI
Chinese Medical Journal 2015;128(17):2330-2339
BACKGROUNDOur previous study has confirmed that one bout of exhaustion (Ex) can cause hippocampus neurocyte damage, excessive apoptosis, and dysfunction. Its initial reason is intracellular calcium overload in hippocampus triggered by N-methyl-D-aspartic acid receptor (NMDAR) over-activation. NMDAR activation can be suppressed by γ-aminobutyric acid (A) receptor (GABAAR). Whether GABAAR can prevent intense exercise-induced hippocampus apoptosis, damage, or dysfunction will be studied in this study.
METHODSAccording to dose test, rats were randomly divided into control (Con), Ex, muscimol (MUS, 0.1 mg/kg) and bicuculline (BIC, 0.5 mg/kg) groups, then all rats underwent once swimming Ex except ones in Con group only underwent training. Intracellular free calcium concentration ([Ca2+]i) was measured by Fura-2-acetoxymethyl ester; glial librillary acidic protein (GFAP) and synaptophysin (SYP) immunofluorescence were also performed; apoptosis were displayed by dUTP nick end labeling (TUNEL) stain; endoplasmic reticulum stress-induced apoptosis pathway was detected by Western blotting analysis; Morris water maze was used to detect learning ability and spatial memory.
RESULTSThe appropriate dose was 0.1 mg/kg for MUS and 0.5 mg/kg for BIC. Ex group showed significantly increased [Ca2+]i and astrogliosis; TUNEL positive cells and levels of GFAP, B cell lymphoma-2 (Bcl-2) associated X protein (Bax), caspase-3, caspase-12 cleavage, CCAAT/enhancer binding protein homologous protein (CHOP), and p-Jun amino-terminal kinase (p-JNK) in Ex group also raised significantly compared to Con group, while SYP, synapse plasticity, and Bcl-2 levels in Ex group were significantly lower than those in Con group. These indexes were back to normal in MUS group. BIC group had the highest levels of [Ca2+]i, astrogliosis, TUNEL positive cell, GFAP, Bax, caspase-3, caspase-12 cleavage, CHOP, and p-JNK, it also gained the lowest SYP, synapse plasticity, and Bcl-2 levels among all groups. Water maze test showed that Ex group had longer escape latency (EL) and less quadrant dwell time than Con group; all indexes between MUS and Con groups had no significant differences; BIC had the longest EL and least quadrant dwell time among all groups.
CONCLUSIONSActivation of GABAA R could prevent intense exercise-induced synapses damage, excessive apoptosis, and dysfunction of hippocampus.
Animals ; Apoptosis ; physiology ; Body Weight ; physiology ; Endoplasmic Reticulum Stress ; physiology ; Hippocampus ; metabolism ; Male ; Physical Exertion ; physiology ; Rats ; Rats, Sprague-Dawley ; Receptors, GABA ; genetics ; metabolism ; Synapses ; pathology
8.The GABA(A) receptor-mediated inhibitory pathway increases the correlated activities in retinal ganglion cells.
Xue LIU ; Ying-Ying ZHANG ; Hai-Qing GONG ; Pei-Ji LIANG
Acta Physiologica Sinica 2009;61(2):99-107
In the present study, the correlated activities of adjacent ganglion cells of transient subtype in response to full-field white light stimulation were investigated in the chicken retina. Pharmacological studies and cross-correlation analysis demonstrated that application of the GABA(A) receptor antagonist bicuculline (BIC) significantly down-regulated the correlation strength while increasing the firing activities. Meanwhile, application of the GABA(A) receptor agonist muscimol (MUS) potentiated the correlated activities while decreasing the firing rates. However, application of the GABA(C) receptor antagonist (1,2,5,6-Tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) did not have a consistent influence on either the firing rates or the correlation strength. These results suggest that in the chicken retina, correlated activities among neighborhood transient ganglion cells can be increased while firing activities are reduced with the activation of GABA(A) receptors. The GABA(A)-receptor-mediated inhibitory pathway may be critical for improving the efficiency of visual information transmission.
Action Potentials
;
Animals
;
Bicuculline
;
pharmacology
;
GABA-A Receptor Antagonists
;
pharmacology
;
Mice
;
Muscimol
;
pharmacology
;
Phosphinic Acids
;
pharmacology
;
Pyridines
;
pharmacology
;
Receptors, GABA-A
;
metabolism
;
Retina
;
physiology
;
Retinal Ganglion Cells
;
physiology
;
gamma-Aminobutyric Acid
9.Effects of ropivacaine on GABA-activated currents in isolated dorsal root ganglion neurons in rats.
Yue YANG ; Jun-Qiang SI ; Chao FAN ; Ke-Tao MA ; Hong-Jv CHENG ; Li LI
Chinese Journal of Applied Physiology 2013;29(3):263-266
OBJECTIVETo investigate the effects of ropivacaine on Gamma-aminobutyric acid(GABA)-activated currents in dorsal root ganglion (DRG) neurons in rats and discuss the analgesia mechanism of ropivacaine.
METHODSBy means of using whole-cell patch-clamp technique, to investigate the modulatory effects of ropivacaine on GABA-activated currents (I(GABA)) in acutely isolated dorsal root ganglion neurons.
RESULTS(1) In 48 out of 73DRG cells (65.7%, 48/73), to perfusion ropivacaine bromide (0.1 - 1 000 micromol/L) were sensitive. Which produce in 0 to 380 pA current. (2) The majority of the neurons examined (74.5%, 73/98) were sensitive to GABA. Concentration of 1 - 1 000 micromol/L GABA could activate a concentration-dependent inward current, which manifested obvious desensitization, and the inward currents could be blocked byGABA-receptor selective antagonist of bicuculline (100 micromol/L). (3) After the neurons were treated with ropivacaine (0.1 - 1000 micromol/L) prior to the application of GABA (100 micromol/L) 30 s, GABA currents were obviously increased. Ropivacaine could make dose-response curve of the GABA up, EC50 is 23.46 micromol/L. Ropivacaine shifted the GABA dose-response curve upward and increased the maximum response to the contrast about 153%.
CONCLUSIONThe enhancement of ropivacaine to DRG neurons activation of GABA current, can lead to enhancement of pre-synaptic inhibition at the spinal cord level. This may be one of the reasons for the anesthetic effect and analgesia for ropivacaine in epidural anesthesia.
Amides ; pharmacology ; Animals ; Ganglia, Spinal ; cytology ; physiology ; Membrane Potentials ; drug effects ; Neurons ; cytology ; drug effects ; physiology ; Patch-Clamp Techniques ; Rats ; Rats, Sprague-Dawley ; Receptors, GABA-A ; physiology
10.PKCɛ mediates substance P inhibition of GABAA receptors-mediated current in rat dorsal root ganglion.
Li LI ; Lei ZHAO ; Yang WANG ; Ke-tao MA ; Wen-yan SHI ; Ying-zi WANG ; Jun-qiang SI
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(1):1-9
The mechanism underlying the modulatory effect of substance P (SP) on GABA-activated response in rat dorsal root ganglion (DRG) neurons was investigated. In freshly dissociated rat DRG neurons, whole-cell patch-clamp technique was used to record GABA-activated current and sharp electrode intracellular recording technique was used to record GABA-induced membrane depolarization. Application of GABA (1-1000 μmol/L) induced an inward current in a concentration-dependent manner in 114 out of 127 DRG neurons (89.8 %) examined with whole-cell patch-clamp recordings. Bath application of GABA (1-1000 μmol/L) evoked a depolarizing response in 236 out of 257 (91.8%) DRG neurons examined with intracellular recordings. Application of SP (0.001-1 μmol/L) suppressed the GABA-activated inward current and membrane depolarization. The inhibitory effects were concentration-dependent and could be blocked by the selective neurokinin 1 (NK1) receptors antagonist spantide but not by L659187 and SR142801 (1 μmol/L, n=7), selective antagonists of NK2 and NK3. The inhibitory effect of SP was significantly reduced by the calcium chelator BAPTA-AM, phospholipase C (PLC) inhibitor U73122, and PKC inhibitor chelerythrine, respectively. The PKA inhibitor H-89 did not affect the SP effect. Remarkably, the inhibitory effect of SP on GABA-activated current was nearly completely removed by a selective PKCε inhibitor epilon-V1-2 but not by safingol and LY333531, selective inhibitors of PKCα and PKCβ. Our results suggest that NK1 receptor mediates SP-induced inhibition of GABA-activated current and membrane depolarization by activating intracellular PLC-Ca²⁺-PKCε cascade. SP might regulate the excitability of peripheral nociceptors through inhibition of the "pre-synaptic inhibition" evoked by GABA, which may explain its role in pain and neurogenic inflammation.
Animals
;
Female
;
Ganglia, Spinal
;
physiology
;
Male
;
Patch-Clamp Techniques
;
Protein Kinase C-epsilon
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, GABA-A
;
physiology
;
Signal Transduction
;
Substance P
;
physiology