1.Multi-gene molecular identification and pathogenicity analysis of pathogens causing root rot of Atractylodes lancea in Hubei province.
Tie-Lin WANG ; Yang XU ; Xiu-Fu WAN ; Zhao-Geng LYU ; Bin-Bin YAN ; Yong-Xi DU ; Chuan-Zhi KANG ; Lan-Ping GUO
China Journal of Chinese Materia Medica 2025;50(7):1721-1726
To clarify the species, pathogenicity, and distribution of the pathogens causing the root rot of Atractylodes lancea in Hubei province, the tissue separation method was used to isolate the pathogens from root rot samples in the main planting areas of A. lancea in Hubei. Based on the preliminary identification of the Fusarium genus by the internal transcribed spacer(ITS) sequence, three housekeeping genes, EF1/EF2, Btu-F-FO1/Btu-F-RO1, and FF1/FR1, were amplified and sequenced. Subsequently, a phylogenetic tree was constructed based on these TEF gene sequences to classify the pathogens. The pathogenicity of these strains was determined using the root irrigation method. A total of 194 pathogen strains were isolated using the tissue separation method. Molecular identification using the three housekeeping genes identified the pathogens as F. solani, F. oxysporum, F. commune, F. equiseti, F. tricinctum, F. redolens, F. fujikuroi, F. avenaceum, F. acuminatum, and F. incarnatum. Among them, F. solani and F. oxysporum were the dominant strains, widely distributed in multiple regions, with F. solani accounting for approximately 54% of the total isolated strains and F. oxysporum accounting for approximately 34%. Other strains accounted for a relatively small proportion, totaling approximately 12%. The results of pathogenicity determination showed that there were certain differences in pathogenicity among strains. The analysis of the pathogenicity differentiation of the widely distributed F. solani and F. oxysporum strains revealed that these dominant strains in Hubei were mainly highly pathogenic. This study determined the species, pathogenicity, and distribution of the pathogens causing the root rot of A. lancea in Hubei province. The results provide a scientific basis for further understanding the root rot of A. lancea and its epidemic occurrence and scientifically preventing and controlling this disease.
Plant Diseases/microbiology*
;
Atractylodes/microbiology*
;
Phylogeny
;
Plant Roots/microbiology*
;
Fusarium/classification*
;
China
;
Virulence
;
Fungal Proteins/genetics*
2.Improvement of catalytic activity and thermostability of glucose oxidase from Aspergillus heteromorphus.
Shanglin YU ; Qiao ZHOU ; Honghai ZHANG ; Yingguo BAI ; Huiying LUO ; Xiaojun YANG ; Bin YAO
Chinese Journal of Biotechnology 2025;41(1):296-307
Glucose oxidase (GOD) is an oxygen-consuming dehydrogenase that can catalyze the production of gluconic acid hydrogen peroxide from glucose, and its specific mechanism of action makes it promising for applications, while the low catalytic activity and poor thermostability have become the main factors limiting the industrial application of this enzyme. In this study, we used the glucose oxidase AtGOD reported with the best thermostability as the source sequence for phylogenetic analysis to obtain the GOD with excellent performance. Six genes were screened and successfully synthesized for functional validation. Among them, the glucose oxidase AhGODB derived from Aspergillus heteromorphus was expressed in Pichia pastoris and showed better thermostability and catalytic activity, with an optimal temperature of 40 ℃, a specific activity of 112.2 U/mg, and a relative activity of 47% after 5 min of treatment at 70 ℃. To improve its activity and thermal stability, we constructed several mutants by directed evolution combined with rational design. Compared with the original enzyme, the mutant T72R/A153P showcased the optimum temperature increasing from 40 to 50 ℃, the specific activity increasing from 112.2 U/mg to 166.1 U/mg, and the relative activity after treatment at 70 ℃ for 30 min increasing from 0% to 33%. In conclusion, the glucose oxidase mutants obtained in this study have improved catalytic activity and thermostability, and have potential for application.
Glucose Oxidase/chemistry*
;
Enzyme Stability
;
Aspergillus/genetics*
;
Pichia/metabolism*
;
Temperature
;
Catalysis
;
Fungal Proteins/metabolism*
;
Hot Temperature
3.Construction and application of an inducible transcriptional regulatory tool from Medicago truncatula in Saccharomyces cerevisiae.
Meilin FENG ; Caifang SHI ; Ying WANG ; Chun LI
Chinese Journal of Biotechnology 2025;41(1):363-375
Transcriptional regulation based on transcription factors is an effective regulatory method widely used in microbial cell factories. Currently, few naturally transcriptional regulatory elements have been discovered from Saccharomyces cerevisiae and applied. Moreover, the discovered elements cannot meet the demand for specific metabolic regulation of exogenous compounds due to the high background expression or narrow dynamic ranges. There are abundant transcriptional regulatory elements in plants. However, the sequences and functions of most elements have not been fully characterized and optimized. Particularly, the applications of these elements in microbial cell factories are still in the infancy stage. In this study, natural regulatory elements from Medicago truncatula were selected, including the transcription factors MtTASR2 and MtTASR3, along with their associated promoter ProHMGR1, for functional characterization and engineering modification. We constructed an inducible transcriptional regulation tool and applied it in the regulation of heterologous β-carotene synthesis in S. cerevisiae, which increased the β-carotene production by 7.31 folds compared with the original strain. This study demonstrates that plant-derived transcriptional regulatory elements can be used to regulate the expression of multiple genes in S. cerevisiae, providing new strategies and ideas for the specific regulation and application of these elements in microbial cell factories.
Medicago truncatula/metabolism*
;
Saccharomyces cerevisiae/metabolism*
;
Transcription Factors/genetics*
;
beta Carotene/biosynthesis*
;
Promoter Regions, Genetic/genetics*
;
Gene Expression Regulation, Plant
;
Metabolic Engineering/methods*
;
Regulatory Elements, Transcriptional/genetics*
;
Plant Proteins/genetics*
4.Establishment and application of a genetic operating system in Wickerhamomyces ciferrii for the synthesis of tetraacetyl phytosphingosine.
Liu LIU ; Zheng'an YIN ; Li PAN
Chinese Journal of Biotechnology 2025;41(1):397-415
Wickerhamomyces ciferrii (W.c), an unconventional heterothallic yeast species, is renowned for its high production of tetraacetyl phytosphingosine (TAPS). Due to its excellent performance in TAPS production, this study aimed to construct a genetic operating system of W.c to enhance the production of TAPS and to screen high-yielding strains by mutagenesis and genetic engineering, thus laying the foundation for further development of industrial production of sphingolipid metabolites. In this study, we selected two autonomous replication elements (CEN, 2μ) and mined 11 endogenous promoter elements to establish a genetic operating system in W. ciferrii. The overexpression of Syr2 and Lcb2 in the sphingolipid metabolism pathway significantly increased the production of TAPS. Meanwhile, we established a method for the identification of haploid mating types of W. ciferrii by combining RT-PCR and flow cytometry. Five strains of W. ciferrii with different mating types constructed from the standard diploid W. ciferrii ATCC 14091 were screened out. A-type haploid W.c 140 showcased the highest production of TAPS with a yield of 4.74 mg/g and a titer of 32.61 mg/L. Mutant strains W.c 140-A9 and W.c 140-A11 were induced by atmospheric pressure room temperature plasma mutagenesis. The recombinant strains W.c 140 OELcb2 and W.c 140 OESyr2 with overexpression were constructed with the genetic operating system established in this study. The TAPS yields of the mutant strains increased by 61.39% and 67.09%, respectively, compared with that of starting strain W.c 140. The recombinant strains cultured in the LCBNB medium achieved yields of 10.60 mg/g and 12.14 mg/g, respectively, representing 2.24 and 2.56 times of that in strain W.c 140. Moreover, the yields of the two recombinant strains were significantly higher than that of the diploid strain ATCC 14091. The genetic operating system and the haploid strain W.c 140 established in this study provide a basis for the subsequent establishment of genetic engineering tools for W. ciferrii.
Sphingosine/genetics*
;
Saccharomycetales/metabolism*
;
Genetic Engineering/methods*
;
Promoter Regions, Genetic
;
Metabolic Engineering/methods*
;
Fungal Proteins/genetics*
5.A flavin-containing monooxygenase from Schizosaccharomyces pombe: characterization and application in the synthesis of S-methyl-L-cysteine sulfoxide.
Mengka LIAN ; Zhaolin SONG ; Wenjing GAO ; Gang ZHU ; Mengjun DONG ; Yu LI ; Yihan LIU ; Fenghua WANG ; Fuping LU
Chinese Journal of Biotechnology 2025;41(1):474-485
S-methyl-L-cysteine sulfoxide (SMCO) is a non-protein sulfur-containing amino acid with a variety of functions. There are few reports on the enzymes catalyzing the biosynthesis of SMCO from S-methyl-L-cysteine (SMC). In this study, the flavin-containing monooxygenase gene derived from Schizosaccharomyces pombe (spfmo) was heterologously expressed in Escherichia coli BL21(DE3) and the enzymatic properties of the expressed protein were analyzed. The optimum catalytic conditions of the recombinant SpFMO were 30 ℃ and pH 8.0, under which the enzyme activity reached 72.77 U/g. An appropriate amount of Mg2+ improved the enzyme activity. The enzyme kinetic analysis showed that the Km and kcat/Km of SpFMO on the substrate SMC were 23.89 μmol/L and 61.71 L/(min·mmol), respectively. Under the optimal reaction conditions, the yield of SMCO synthesized from SMC catalyzed by SpFMO was 12.31% within 9 h. This study provides reference for the enzymatic synthesis of SMCO.
Schizosaccharomyces/genetics*
;
Escherichia coli/metabolism*
;
Recombinant Proteins/metabolism*
;
Cysteine/biosynthesis*
;
Mixed Function Oxygenases/metabolism*
;
Schizosaccharomyces pombe Proteins/metabolism*
;
Oxygenases/metabolism*
;
Kinetics
6.Construction and fermentation regulation of strains with high yields of echinocandin B.
Kun NIU ; Hongwei CAI ; Yixin YE ; Jinyue XU ; Zhiqiang LIU ; Yuguo ZHENG
Chinese Journal of Biotechnology 2025;41(4):1455-1466
Echinocandin B (ECB) is a key precursor of the antifungal drug anidulafungin. It is a secondary metabolite of Aspergillus nidulans, and its titer in fermentation is significantly affected by the ECB synthesis pathway and cell morphology. In this study, the key genes related to the transcription activation, hydroxylation, and cell morphology during ECB biosynthesis were investigated to increase the fermentation titer of ECB and to change the cell morphology of Aspergillus nidulans to reduce the viscosity of the fermentation broth. The results indicated that after overexpression of ecdB and ecdK, the ECB titer increased by 25.8% and 23.7%, respectively, compared with that of the wild-type strain, reaching (2 030.5±99.2) mg/L and (1 996.4±151.4) mg/L. However, the deletion of fksA associated with cell wall synthesis resulted in damage to the cell wall, affecting strain growth and product synthesis. The engineered strain overexpressing ecdB was fermented in a 50-L bioreactor, in which the ECB titer reached 2 234.5 mg/L. The findings laid a research foundation for the subsequent metabolic engineering of this strain.
Fermentation
;
Aspergillus nidulans/genetics*
;
Echinocandins/genetics*
;
Bioreactors/microbiology*
;
Fungal Proteins/biosynthesis*
;
Metabolic Engineering
7.Construction and optimization of the artificially enhanced promoter TCIN5B.
Meng GUO ; Shuxin DONG ; Jun LI ; Chun LI
Chinese Journal of Biotechnology 2025;41(8):3275-3286
To construct stress-responsive promoters, we mined the transcriptome data of the industrial strain A223 under stress. The transcription factor CIN5 showed significantly increased expression under stress but exhibited limited resistance. Further analysis of CIN5-interacting genes revealed that the binding motif "TTACGTAATC" (named CIN5BS) of CIN5 displayed transcription-enhancing activity. Four artificially enhanced promoters TCIN5B(3-6) were created by insertion of CIN5BS as a cis-element into different sites of the promoter TEF1, achieving 15.25-fold transcriptional enhancement. Five cis-elements (CIN5B4-1-CIN5B4-5) were designed through G+C content optimization, generating five stronger artificially enhanced promoters (TCIN5B4-1-TCIN5B4-5). For example, TCIN5B4-1 demonstrated 4.71 times higher transcriptional activity than the control at 37 ℃. This study established a technical framework of transcription factor mining-cis-element design-promoter reconstruction, providing a reference strategy for yeast cell factories to stably produce natural compounds under high-temperature stress conditions.
Promoter Regions, Genetic/genetics*
;
Transcription Factors/genetics*
;
Saccharomyces cerevisiae/metabolism*
;
Stress, Physiological/genetics*
;
Saccharomyces cerevisiae Proteins/genetics*
8.Signature motif identification and enzymatic characterization of a protein tyrosine phosphatase in Metarhizium anisopliae.
Ze TAN ; Pei ZHU ; Zhenlun LI ; Shuiying YANG
Chinese Journal of Biotechnology 2025;41(9):3579-3588
Protein tyrosine phosphatases (PTPs, EC 3.1.3.48) are key regulators of cellular processes, with the catalytic activity attributed to the conserved motif (H/V)CX5R(S/T), where cysteine and arginine residues are critical. Previous studies revealed that alternative splicing of extracellular phosphatase mRNA precursors in Metarhizium anisopliae generated two distinct transcripts, with the longer sequence containing a novel HCPTPMLS motif resembling PTP signatures but lacking the arginine residue. To identify the novel signature motif and characterize its enzymatic properties, we heterologously expressed and purified both proteins in Pichia pastoris and comprehensively characterized their enzymatic properties. The protein containing the HCPTPMLS motif (designated as L-protein) exhibited the highest activity at pH 5.5 and a strong preference for pTyr substrates. Its phosphatase activity was inhibited by Ag+, Zn2+, Cu2+, molybdate, and tungstate, but enhanced by Ca2+ and EDTA. AcP101 (lacking HCPTPMLS) showed the maximal activity at pH 6.5 and a strong preference toward pNPP (P < 0.05), with the activity inhibited by NaF and tartrate, but enhanced by Mg2+ and Mn2+. Functional analysis confirmed that the L-protein retained the PTP activity despite the absence of arginine in its signature motif, while AcP101 functioned as an acid phosphatase. This study provides the first functional validation of an arginine-deficient PTP motif, expanding the definition of PTP signature motifs and offering new insights for phosphatase classification.
Metarhizium/genetics*
;
Protein Tyrosine Phosphatases/chemistry*
;
Amino Acid Motifs
;
Recombinant Proteins/biosynthesis*
;
Amino Acid Sequence
;
Pichia/metabolism*
;
Fungal Proteins/chemistry*
;
Substrate Specificity
;
Saccharomycetales
9.Microbe-induced gene silencing targeting VdEno of Verticillium dahliae for the control of cotton Verticillium wilt.
Wen TIAN ; Qianye GUO ; Qing SHUAI ; Qingyan LIU ; Huishan GUO ; Jianhua ZHAO
Chinese Journal of Biotechnology 2025;41(10):3790-3800
Small RNAs (sRNAs), the key components of RNA interference (RNAi) or RNA silencing, can mediate cell-autonomous gene silencing and function as signaling molecules across species. Microbe-induced gene silencing (MIGS), which is based on interspecies RNAi, is an effective approach for controlling fungal diseases in crops. The enolase gene VdEno is essential for the growth and development of the fungal pathogen Verticillium dahliae, which causes cotton Verticillium wilt. In this study, we engineered Trichoderma harzianum (Th) to express the double-stranded RNA (dsRNA) targeting VdEno. The engineered strain Th-VdEnoi successfully generated VdEno-specific small interfering RNA (siVdEno). We further confirmed that Th-VdEnoi effectively induced VdEno silencing at the translational level. The results of crop protection assays revealed that the cotton plants co-inoculated with V. dahliae (strain V592) and Th-VdEnoi presented significantly reduced disease severity and lower fungal biomass in their roots than the control plants inoculated with V. dahliae alone or with V. dahliae and Th-GFPi (a control strain expressing GFP-targeting dsRNA). Collectively, our findings demonstrate that VdEno is an effective target for controlling cotton Verticillium wilt and confirm that MIGS is a promising strategy for managing soil-borne fungal pathogens in crops. MIGS provides strong technical support for reducing the application of conventional chemical pesticides, developing eco-friendly biopesticides, and facilitating the sustainable development of agriculture.
Gossypium/microbiology*
;
Plant Diseases/prevention & control*
;
Gene Silencing
;
Ascomycota/genetics*
;
RNA Interference
;
RNA, Double-Stranded/genetics*
;
Hypocreales/genetics*
;
RNA, Small Interfering/genetics*
;
Verticillium/genetics*
;
Fungal Proteins/genetics*
10.Identification of banana ADA1 gene family members and their expression profiles under biotic and abiotic stresses.
Qiqi ZHAO ; Wenhui REN ; Huifei ZHU ; Qiuzhen WU ; Chunyu ZHANG ; Xiaoqiong XU ; Binbin LUO ; Yuji HUANG ; Yukun CHEN ; Yuling LIN ; Zhongxiong LAI
Chinese Journal of Biotechnology 2024;40(1):190-210
The Spt-Ada-Gcn5-acetyltransferase (SAGA) is an ancillary transcription initiation complex which is highly conserved. The ADA1 (alteration/deficiency in activation 1, also called histone H2A functional interactor 1, HFI1) is a subunit in the core module of the SAGA protein complex. ADA1 plays an important role in plant growth and development as well as stress resistance. In this paper, we performed genome-wide identification of banana ADA1 gene family members based on banana genomic data, and analyzed the basic physicochemical properties, evolutionary relationships, selection pressure, promoter cis-acting elements, and its expression profiles under biotic and abiotic stresses. The results showed that there were 10, 6, and 7 family members in Musa acuminata, Musa balbisiana and Musa itinerans. The members were all unstable and hydrophilic proteins, and only contained the conservative SAGA-Tad1 domain. Both MaADA1 and MbADA1 have interactive relationship with Sgf11 (SAGA-associated factor 11) of core module in SAGA. Phylogenetic analysis revealed that banana ADA1 gene family members could be divided into 3 classes. The evolution of ADA1 gene family members was mostly influenced by purifying selection. There were large differences among the gene structure of banana ADA1 gene family members. ADA1 gene family members contained plenty of hormonal elements. MaADA1-1 may play a prominent role in the resistance of banana to cold stress, while MaADA1 may respond to the Panama disease of banana. In conclusion, this study suggested ADA1 gene family members are highly conserved in banana, and may respond to biotic and abiotic stress.
Musa/genetics*
;
Phylogeny
;
Fungal Proteins
;
Cell Nucleus
;
Histones
;
Stress, Physiological/genetics*

Result Analysis
Print
Save
E-mail