1.Antioxidative effect of fullerenol on goat epididymal spermatozoa.
M Arul MURUGAN ; Bindu GANGADHARAN ; P P MATHUR
Asian Journal of Andrology 2002;4(2):149-152
AIMTo evaluate the effect of fullerenol on the antioxidant system of goat epididymal sperm.
METHODSFresh epididymides of adult goats were obtained from local slaughter houses and sperm were collected by chopping the epididymis in modified Ringer's phosphate solution (RPS medium). After several washings the sperm samples were equally dispersed in RPS medium and incubated with fullerenol (1, 10 and 100 micromol) and FeSO(4)/ascorbate (40/200 micromol) with or without fullerenol (1, 10 and 100 micromol) for 3 h at 32 degree C. After incubation, an aliquot of sperm samples were homogenized and centrifuged and the supernatant used for biochemical studies.
RESULTSIn FeSO(4)/ascorbate-incubated samples, the activities of antioxidant enzymes, superoxide dismutase, glutathione peroxidase and glutathione reductase, were decreased while lipid peroxidation increased as compared to the control sperm samples. In fullerenol-incubated sperm samples, the activities of superoxide dismutase, glutathione peroxidase and glutathione reductase were increased while lipid peroxidation was decreased in a dose-dependent manner. Co-incubation of sperm with fullerenol (1,10 and 100 micromol) and FeSO(4)/ascorbate (40/200 micromol) increased the activities of antioxidant enzymes and prevented the iron-induced elevation of lipid peroxidation in a dose-dependent manner.
CONCLUSIONFullerenol reduces iron-induced oxidative stress in epididymal sperm of goat by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation.
Animals ; Antioxidants ; pharmacology ; Epididymis ; Fullerenes ; pharmacology ; Glutathione Peroxidase ; metabolism ; Glutathione Reductase ; metabolism ; Goats ; In Vitro Techniques ; Lipid Peroxidation ; Male ; Spermatozoa ; drug effects ; physiology ; Superoxide Dismutase ; metabolism
2.Protective effect of reduced glutathione C60 derivative against hydrogen peroxide-induced apoptosis in HEK 293T cells.
Jin HUANG ; Chi ZHOU ; Jun HE ; Zheng HU ; Wen-Chao GUAN ; Sheng-Hong LIU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(3):356-363
Hydrogen peroxide (H2O2) and free radicals cause oxidative stress, which induces cellular injuries, metabolic dysfunction, and even cell death in various clinical abnormalities. Fullerene (C60) is critical for scavenging oxygen free radicals originated from cell metabolism, and reduced glutathione (GSH) is another important endogenous antioxidant. In this study, a novel water-soluble reduced glutathione fullerene derivative (C60-GSH) was successfully synthesized, and its beneficial roles in protecting against H2O2-induced oxidative stress and apoptosis in cultured HEK 293T cells were investigated. Fourier Transform infrared spectroscopy and (1)H nuclear magnetic resonance were used to confirm the chemical structure of C60-GSH. Our results demonstrated that C60-GSH prevented the reactive oxygen species (ROS)-mediated cell damage. Additionally, C60-GSH pretreatment significantly attenuated H2O2-induced superoxide dismutase (SOD) consumption and malondialdehyde (MDA) elevation. Furthermore, C60-GSH inhibited intracellular calcium mobilization, and subsequent cell apoptosis via bcl-2/bax-caspase-3 signaling pathway induced by H2O2 stimulation in HEK 293T cells. Importantly, these protective effects of C60-GSH were superior to those of GSH. In conclusion, these results suggested that C60-GSH has potential to protect against H2O2-induced cell apoptosis by scavenging free radicals and maintaining intracellular calcium homeostasis without evident toxicity.
Antioxidants
;
pharmacology
;
Apoptosis
;
drug effects
;
Calcium
;
metabolism
;
Caspase 3
;
genetics
;
metabolism
;
Cell Survival
;
drug effects
;
Fullerenes
;
chemistry
;
pharmacology
;
Gene Expression Regulation
;
Glutathione
;
analogs & derivatives
;
pharmacology
;
HEK293 Cells
;
Humans
;
Hydrogen Peroxide
;
antagonists & inhibitors
;
pharmacology
;
Ion Transport
;
drug effects
;
Malondialdehyde
;
antagonists & inhibitors
;
metabolism
;
Oxidative Stress
;
drug effects
;
Proto-Oncogene Proteins c-bcl-2
;
genetics
;
metabolism
;
Reactive Oxygen Species
;
antagonists & inhibitors
;
metabolism
;
Signal Transduction
;
Superoxide Dismutase
;
metabolism
;
bcl-2-Associated X Protein
;
genetics
;
metabolism
4.Effect of aspect ratio on the uptake and toxicity of hydroxylated-multi walled carbon nanotubes in the nematode, Caenorhabditis elegans.
Hyun Jeong EOM ; Jae Seong JEONG ; Jinhee CHOI
Environmental Health and Toxicology 2015;30(1):e2015001-
OBJECTIVES: In this study, the effect of tube length and outer diameter (OD) size of hydroxylated-multi walled carbon nanotubes (OH-MWCNTs) on their uptake and toxicity was investigated in the nematode Caenorhabditis elegans using a functional mutant analysis. METHODS: The physicochemical properties of three different OH-MWCNTs were characterized. Uptake and toxicity were subsequently investigated on C. elegans exposed to MWCNTs with different ODs and tube lengths. RESULTS: The results of mutant analysis suggest that ingestion is the main route of MWCNTs uptake. We found that OH-MWCNTs with smaller ODs were more toxic than those with larger ODs, and OH-MWCNTs with shorter tube lengths were more toxic than longer counterparts to C. elegans. CONCLUSIONS: Overall the results suggest the aspect ratio affects the toxicity of MWCNTs in C. elegans. Further thorough study on the relationship between physicochemical properties and toxicity needs to be conducted for more comprehensive understanding of the uptake and toxicity of MWCNTs.
Caenorhabditis elegans*
;
Caenorhabditis*
;
Carbon*
;
Eating
;
Nanotubes, Carbon*
5.Effect of aspect ratio on the uptake and toxicity of hydroxylated-multi walled carbon nanotubes in the nematode, Caenorhabditis elegans.
Hyun Jeong EOM ; Jae Seong JEONG ; Jinhee CHOI
Environmental Health and Toxicology 2015;30(1):e2015001-
OBJECTIVES: In this study, the effect of tube length and outer diameter (OD) size of hydroxylated-multi walled carbon nanotubes (OH-MWCNTs) on their uptake and toxicity was investigated in the nematode Caenorhabditis elegans using a functional mutant analysis. METHODS: The physicochemical properties of three different OH-MWCNTs were characterized. Uptake and toxicity were subsequently investigated on C. elegans exposed to MWCNTs with different ODs and tube lengths. RESULTS: The results of mutant analysis suggest that ingestion is the main route of MWCNTs uptake. We found that OH-MWCNTs with smaller ODs were more toxic than those with larger ODs, and OH-MWCNTs with shorter tube lengths were more toxic than longer counterparts to C. elegans. CONCLUSIONS: Overall the results suggest the aspect ratio affects the toxicity of MWCNTs in C. elegans. Further thorough study on the relationship between physicochemical properties and toxicity needs to be conducted for more comprehensive understanding of the uptake and toxicity of MWCNTs.
Caenorhabditis elegans*
;
Caenorhabditis*
;
Carbon*
;
Eating
;
Nanotubes, Carbon*
6.Discerning Trends in Multiplex Immunoassay Technology with Potential for Resource-Limited Settings.
Laboratory Medicine Online 2013;3(1):62-72
BACKGROUND: In the search for more powerful tools for diagnoses of endemic diseases in resource-limited settings, we have been analyzing technologies with potential applicability. Increasingly, the process focuses on readily accessible bodily fluids combined with increasingly powerful multiplex capabilities to unambiguously diagnose a condition without resorting to reliance on a sophisticated reference laboratory. Although these technological advances may well have important implications for the sensitive and specific detection of disease, to date their clinical utility has not been demonstrated, especially in resource-limited settings. Furthermore, many emerging technological developments are in fields of physics or engineering, which are not readily available to or intelligible to clinicians or clinical laboratory scientists. CONTENT: This review provides a look at technology trends that could have applicability to high-sensitivity multiplexed immunoassays in resource-limited settings. Various technologies are explained and assessed according to potential for reaching relevant limits of cost, sensitivity, and multiplex capability. Frequently, such work is reported in technical journals not normally read by clinical scientists, and the authors make enthusiastic claims for the potential of their technology while ignoring potential pitfalls. Thus it is important to draw attention to technical hurdles that authors may not be publicizing. SUMMARY: Immunochromatographic assays, optical methods including those involving waveguides, electrochemical methods, magnetorestrictive methods, and field-effect transistor methods based on nanotubes, nanowires, and nanoribbons reveal possibilities as next-generation technologies.
Endemic Diseases
;
Health Resorts
;
Immunoassay
;
Immunochromatography
;
Nanotubes
;
Nanotubes, Carbon
;
Nanowires
7.Current researches on the mechanisms of carbon nanotubes entering cells and their location in the cells.
Journal of Biomedical Engineering 2010;27(1):198-210
Carbon nanotube (CNT) is an important class of artificial nanomaterials with diverse potentials of nanobiomedical application. Before being introduced into bio-systems, it is necessary to explore the behavior and fate of CNTs in cells. However, limited understandings or information has been currently obtained in this realm, even some experimental results from different labs are conflicted. In this review, we focused on the location of CNTs in various cells as well as on the mechanisms of CNTs crossing the cell membranes. On the basis of data analysis shown by the current literatures, it was suggested that CNTs could enter cell's nucleus in certain conditions. Endocytosis and diffusion both exist; however, in some cases, one of them exhibited as major path, while the other one was not detectable because of the challenge resulting from the complex biological environments. The obstacles to powerful and standard characterizations of CNTs have also been discussed.
Cells
;
metabolism
;
Diffusion
;
Endocytosis
;
Nanotubes, Carbon
;
chemistry
9.The molecular mechanism between baicalin metal complexes and bovin serum album.
Ming GUO ; Xian TAN ; Ying WANG ; Xiao-yan GAO ; Zhou-ling WU ; Li-jun ZHANG
Acta Pharmaceutica Sinica 2015;50(5):613-620
In this paper, the new carbon nanotube modified glassy carbon electrode (F-CNTs/GCE) was prepared to establish a new method for studying the molecular interaction mechanism between baicalin metal complexes (BMC) and bovine serum album (BSA), and the principle of this method was discussed deeply. Under the physiological condition, the thermodynamics and kinetics properties of interaction between BMC and BSA were studied by cyclic voltammetry (CV) to inference their molecular effective mechanism. The results show that the presence of F-CNTs can accelerate the electron transfer, and better response signal was showed in the BMC/BMC-BSA system. The detection of interaction of BMC-BSA used new method show that BMC-BSA generates stable thermodynamically non-covalent compounds, and the obtained average binding sites of BMC-BSA were 1.7; the number of electron transfer in BMC/BMC-BSA reaction process was 2, and non electroactive supramolecular compounds of BMC-BSA were generated by this interacting reaction. The relevant research work provides a new way to study the molecular mechanism for the interaction of drugs with protein, and with a certain reference value for discussion on the non covalent interactions.
Animals
;
Cattle
;
Coordination Complexes
;
chemistry
;
Electrodes
;
Flavonoids
;
chemistry
;
Kinetics
;
Nanotubes, Carbon
;
Serum Albumin, Bovine
;
chemistry
;
Thermodynamics
10.The biocompatibility of carbon nanotubes.
Journal of Biomedical Engineering 2008;25(3):742-746
Carbon nanotubes (CNT) are well-ordered, high aspect ratio allotropes of carbon. The two main variants, namely single-walled carbon nanotubes (SWNT) and multi-walled carbon nanotubes (MWNT) both possess the characteristics of high tensile strength, ultra-light weight, and excellent chemical and thermal stability. They also possess the semi- and metallic-conductive properties. This startling array of features has led to many proposed applications in the biomedical field. However, it is only recently that information on toxicity and biocompatibility has become available. Herein is presented a review on the toxicity and biocompatibility of carbon nanotubes.
Animals
;
Biocompatible Materials
;
toxicity
;
Humans
;
Materials Testing
;
Nanotubes, Carbon
;
toxicity
;
Toxicity Tests