1.Effectiveness and Safety of Apatinib Plus Programmed Cell Death Protein 1 Blockades for Patients with Treatment-refractory Metastatic Colorectal Cancer:A Retrospective Exploratory Study
Shenglong LI ; Hao ZHENG ; Qinghong GE ; Shuli XIA ; Ke ZHANG ; Chunjing WANG ; Fujing WANG
Journal of Cancer Prevention 2023;28(3):106-114
This study aimed to investigate the efficacy and safety of apatinib plus programmed cell death protein 1 (PD-1) blockades for patients with metastatic colorectal cancer (CRC) who were refractory to the standard regimens. In this retrospective study, patients with metastatic CRC who received apatinib plus PD-1 blockades in clinical practice were included. The initial dosage of apatinib was 250 mg or 500 mg, and PD-1 blockades were comprised of camrelizumab, sintilimab and pembrolizumab. Efficacy and safety data were collected through the hospital’s electronic medical record system. From October 2018 to March 2022, a total of 43 patients with metastatic CRC were evaluated for efficacy and safety. The results showed an objective response rate of 25.6% (95% CI, 13.5%-41.2%) and a disease control rate of 72.1% (95% CI, 56.3%-84.7%). The median progression-free survival (PFS) of the cohort was 5.8 months (95% CI, 3.81-7.79), and the median overall survival (OS) was 10.3 months (95% CI, 5.75-14.85). The most common adverse reactions were fatigue (76.7%), hypertension (72.1%), diarrhea (62.8%), and hand-foot syndrome (51.2%).Multivariate Cox regression analysis revealed that Eastern Cooperative Oncology Group (ECOG) performance status and location of CRC (left or right-side) were independent factors to predict PFS of patients with metastatic CRC treated with the combination regimen. Consequently, the combination of apatinib and PD-1 blockades demonstrated potential efficacy and acceptable safety for patients with treatment-refractory metastatic CRC. This conclusion should be confirmed in prospective clinical trials subsequently.
2.Deubiquitinating enzyme JOSD2 affects susceptibility of non-small cell lung carcinoma cells to anti-cancer drugs through DNA damage repair.
Fujing GE ; Xiangning LIU ; Hongyu ZHANG ; Tao YUAN ; Hong ZHU ; Bo YANG ; Qiaojun HE
Journal of Zhejiang University. Medical sciences 2023;52(5):533-543
OBJECTIVES:
To investigate the effects and mechanisms of deubiquitinating enzyme Josephin domain containing 2 (JOSD2) on susceptibility of non-small cell lung carcinoma (NSCLC) cells to anti-cancer drugs.
METHODS:
The transcriptome expression and clinical data of NSCLC were downloaded from the Gene Expression Omnibus. Principal component analysis and limma analysis were used to investigate the deubiquitinating enzymes up-regulated in NSCLC tissues. Kaplan-Meier analysis was used to investigate the relationship between the expression of deubiquitinating enzymes and overall survival of NSCLC patients. Gene ontology enrichment and gene set enrichment analysis (GSEA) were used to analyze the activation of signaling pathways in NSCLC patients with high expression of JOSD2. Gene set variation analysis and Pearson correlation were used to investigate the correlation between JOSD2 expression levels and DNA damage response (DDR) pathway. Western blotting was performed to examine the expression levels of JOSD2 and proteins associated with the DDR pathway. Immunofluorescence was used to detect the localization of JOSD2. Sulforhodamine B staining was used to examine the sensitivity of JOSD2-knock-down NSCLC cells to DNA damaging drugs.
RESULTS:
Compared with adjacent tissues, the expression level of JOSD2 was significantly up-regulated in NSCLC tissues (P<0.05), and was significantly correlated with the prognosis in NSCLC patients (P<0.05). Compared with the tissues with low expression of JOSD2, the DDR-related pathways were significantly upregulated in NSCLC tissues with high expression of JOSD2 (all P<0.05). In addition, the expression of JOSD2 was positively correlated with the activation of DDR-related pathways (all P<0.01). Compared with the control group, overexpression of JOSD2 significantly promoted the DDR in NSCLC cells. In addition, DNA damaging agents significantly increase the nuclear localization of JOSD2, whereas depletion of JOSD2 significantly enhanced the sensitivity of NSCLC cells to DNA damaging agents (all P<0.05).
CONCLUSIONS
Deubiquitinating enzyme JOSD2 may regulate the malignant progression of NSCLC by promoting DNA damage repair pathway, and depletion of JOSD2 significantly enhances the sensitivity of NSCLC cells to DNA damaging agents.
Humans
;
Carcinoma, Non-Small-Cell Lung/genetics*
;
Antineoplastic Agents/pharmacology*
;
Lung Neoplasms/genetics*
;
DNA Damage
;
DNA
;
Deubiquitinating Enzymes/genetics*
3.The effect of PLK1 inhibitor in osimertinib resistant non-small cell lung carcinoma cells.
Xiaoyang DAI ; Xiangning LIU ; Fujing GE ; Hongdao ZHU ; Churun ZHENG ; Fangjie YAN ; Bo YANG
Journal of Zhejiang University. Medical sciences 2023;52(5):558-566
OBJECTIVES:
To investigate the effects of PLK1 inhibitors on osimertinib-resistant non-small cell lung carcinoma (NSCLC) cells and the anti-tumor effect combined with osimertinib.
METHODS:
An osimertinib resistant NCI-H1975 cell line was induced by exposure to gradually increasing drug concentrations. Osimertinib-resistant cells were co-treated with compounds from classical tumor pathway inhibitor library and osimertinib to screen for compounds with synergistic effects with osimertinib. The Gene Set Enrichment Analysis (GSEA) was used to investigate the activated signaling pathways in osimertinib-resistant cells; sulforhodamine B (SRB) staining was used to investigate the effect of PLK1 inhibitors on osimertinib-resistant cells and the synergistic effect of PLK1 inhibitors combined with osimertinib.
RESULTS:
Osimertinib-resistance in NCI-H1975 cell (resistance index=43.45) was successfully established. The PLK1 inhibitors GSK 461364 and BI 2536 had synergistic effect with osimertinib. Compared with osimertinib-sensitive cells, PLK1 regulatory pathway and cell cycle pathway were significantly activated in osimertinib-resistant cells. In NSCLC patients with epidermal growth factor receptor mutations treated with osimertinib, PLK1 mRNA levels were negatively correlated with progression free survival of patients (R=-0.62, P<0.05), indicating that excessive activation of PLK1 in NSCLC cells may cause cell resistant to osimertinib. Further in vitro experiments showed that IC50 of PLK1 inhibitors BI 6727 and GSK 461364 in osimertinib-resistant cells were lower than those in sensitive ones. Compared with the mono treatment of osimertinib, PLK1 inhibitors combined with osimertinib behaved significantly stronger effect on the proliferation of osimertinib-resistant cells.
CONCLUSIONS
PLK1 inhibitors have a synergistic effect with osimertinib on osimertinib-resistant NSCLC cells which indicates that they may have potential clinical value in the treatment of NSCLC patients with osimertinib resistance.
Humans
;
Carcinoma, Non-Small-Cell Lung
;
Lung Neoplasms
;
ErbB Receptors/therapeutic use*
;
Drug Resistance, Neoplasm/genetics*
;
Mutation
;
Cell Line, Tumor