2.Research progress in mechanisms of traditional Chinese medicine polysaccharides in prevention and treatment of alcoholic liver disease.
Yu-Fan CHEN ; He JIANG ; Qing MA ; Qi-Han LUO ; Shuo HUANG ; Jiang QIU ; Fu-Zhe CHEN ; Zi-Yi SHAN ; Ping QIU
China Journal of Chinese Materia Medica 2025;50(2):356-362
Alcoholic liver disease(ALD), a major cause of chronic liver disease worldwide, poses a serious threat to human health. Despite the availability of various drugs for treating ALD, their efficacy is often uncertain, necessitating the search for new therapeutic approaches. Traditional Chinese medicine polysaccharides have garnered increasing attention in recent years due to their versatility, high efficiency, and low side effects, and they have demonstrated significant potential in preventing and treating ALD. Emerging studies have suggested that these polysaccharides exert their therapeutic effects through multiple mechanisms, including the inhibition of oxidative stress and the regulation of lipid metabolism, gut microbiota, and programmed cell death. This review summarizes the recent research progress in the pharmacological effects and regulatory mechanisms of traditional Chinese medicine polysaccharides in treating ALD, aiming to provide a scientific basis and theoretical support for their application in the prevention and treatment of ALD.
Humans
;
Liver Diseases, Alcoholic/metabolism*
;
Polysaccharides/administration & dosage*
;
Drugs, Chinese Herbal/administration & dosage*
;
Animals
;
Oxidative Stress/drug effects*
;
Medicine, Chinese Traditional
;
Gastrointestinal Microbiome/drug effects*
;
Lipid Metabolism/drug effects*
3.Lymph node metastasis in the prostatic anterior fat pad and prognosis after robot-assisted radical prostatectomy.
Zhou-Jie YE ; Yong SONG ; Jin-Peng SHAO ; Wen-Zheng CHEN ; Guo-Qiang YANG ; Qing-Shan DU ; Kan LIU ; Jie ZHU ; Bao-Jun WANG ; Jiang-Ping GAO ; Wei-Jun FU
National Journal of Andrology 2025;31(3):216-221
OBJECTIVE:
To investigate lymph node metastasis (LNM) in the prostatic anterior fat pad (PAFP) of PCa patients after robot-assisted radical prostatectomy (RARP), and analyze the clinicopathological features and prognosis of LNM in the PAFP.
METHODS:
We retrospectively analyzed the clinicopathological data on 1 003 cases of PCa treated by RARP in the Department of Urology of PLA General Hospital from January 2017 to December 2022. All the patients underwent routine removal of the PAFP during RARP and pathological examination, with the results of all the specimens examined and reported by pathologists. Based on the presence and locations of LNM, we grouped the patients for statistical analysis, compared the clinicopathological features between different groups using the Student's t, Mann-Whitney U and Chi-square tests, and conducted survival analyses using the Kaplan-Meier and Log-rank methods and survival curves generated by Rstudio.
RESULTS:
Lymph nodes were detected in 77 (7.7%) of the 1 003 PAFP samples, and LNM in 11 (14.3%) of the 77 cases, with a positive rate of 1.1% (11/1 003). Of the 11 positive cases, 9 were found in the upgraded pathological N stage, and the other 2 complicated by pelvic LNM. The patients with postoperative pathological stage≥T3 constituted a significantly higher proportion in the PAFP LNM than in the non-PAFP LNM group (81.8% [9/11] vs 36.2% [359/992], P = 0.005), and so did the cases with Gleason score ≥8 (87.5% [7/8] vs 35.5% [279/786], P = 0.009). No statistically significant differences were observed in the clinicopathological features and biochemical recurrence-free survival between the patients with PAFP LNM only and those with pelvic LNM only.
CONCLUSION
The PAFP is a potential route to LNM, and patients with LNM in the PAFP are characterized by poor pathological features. There is no statistically significant difference in biochemical recurrence-free survival between the patients with PAFP LNM only and those with pelvic LNM only. Routine removal of the PAFP and independent pathological examination of the specimen during RARP is of great clinical significance.
Humans
;
Male
;
Prostatectomy/methods*
;
Robotic Surgical Procedures
;
Lymphatic Metastasis
;
Retrospective Studies
;
Prognosis
;
Prostatic Neoplasms/pathology*
;
Adipose Tissue/pathology*
;
Prostate/pathology*
;
Lymph Nodes/pathology*
;
Middle Aged
;
Aged
4.Exploring critical thinking in the management of diagnosis and treatment of fulminant pregnancy-associated atypical haemolytic uraemic syndrome.
Fei GAO ; Lunsheng JIANG ; Shan MA ; Yuantuan YAO ; Wanping AO ; Bao FU
Chinese Critical Care Medicine 2025;37(7):680-683
Critical care emphasizes critical thinking, focuses on the triggers that lead to disease progression, and attaches great importance to early diagnosis of diseases and assessment of the compensatory capacity of vital organs. Pregnancy-associated atypical hemolytic uremic syndrome (P-aHUS) is relatively rare in the intensive care unit (ICU). Most cases occur within 10 weeks after delivery. Severe cases can be life-threatening. It characterized by microangiopathic hemolytic anemia, decreased platelet count (PLT), and acute kidney injury (AKI). Early clinical diagnosis is difficult due to its similarity to various disease manifestations. On January 28, 2024, a 26-year-old pregnant woman at 26+3 weeks gestation was transferred to the ICU 19 hours post-vaginal delivery due to abdominal pain, reduced urine output, decreased PLT, elevated D-dimer, tachycardia, increased respiratory rate and declined oxygenation. On the day of ICU admission, the critical care physician identified the causes that triggered the acute respiratory and circulatory events based on the "holistic and local" critical care thinking. The condition was stabilized rapidly by improving the capacity overload. In terms of etiological diagnosis, under the guidance of the "point and face" critical care thinking, starting from abnormality indicators including a decrease in hemoglobin (Hb) and PLT and elevated D-dimer and fibrin degradation product (FDP) without other abnormal coagulation indicators, the critical care physician ultimately determined the diagnosis direction of thrombotic microangiopathy (TMA) by delving deeply into the essence of the disease and formulating a laboratory examination plan in a reasonable and orderly manner. In terms of in-depth diagnosis, combining the disease development process, family history, and past history, applying the two-way falsification thinking of "forward and reverse" as well as "questioning and hypothesis", the diagnosis possibilities of preeclampsia, HELLP syndrome [including hemolysis (H), elevated liver function (EL) and low platelet count (LP)], thrombotic thrombocytopenic purpura (TTP), typical hemolytic uremic syndrome (HUS), and autoimmune inflammatory diseases inducing the condition was ruled out. The diagnosis of complement activation-induced P-aHUS was finally established for the patient, according to the positive result of the complement factor H (CFH). Active decision was made in the initial treatment. The plasma exchange was initiated early. "Small goals" were formulated in stages. The "small endpoints" were dynamically controlled in a goal-oriented manner to achieve continuous realization of the overall treatment effect through phased "small goals". On the 5th day of ICU treatment, the trend of microthrombosis in the patient was controlled, organ function damage was improved, and the patient was transferred out of the ICU. It is possible to reach a favorable clinical outcome for critically ill patients by applying a critical care mindset to quickly integrate diagnostic and therapeutic strategies, accurately identifying the triggers and causes that led to the progression of the disease, and using critical care medical techniques for early and effective intervention.
Humans
;
Female
;
Pregnancy
;
Adult
;
Atypical Hemolytic Uremic Syndrome/therapy*
;
Intensive Care Units
;
Pregnancy Complications, Hematologic/therapy*
;
Critical Care
5.Inflammatory Bowel Disease and Dementia: Evidence Triangulation from a Meta-Analysis of Observational Studies and Mendelian Randomization Study.
Di LIU ; Mei Ling CAO ; Shan Shan WU ; Bing Li LI ; Yi Wen JIANG ; Teng Fei LIN ; Fu Xiao LI ; Wei Jie CAO ; Jin Qiu YUAN ; Feng SHA ; Zhi Rong YANG ; Jin Ling TANG
Biomedical and Environmental Sciences 2025;38(1):56-66
OBJECTIVE:
Observational studies have found associations between inflammatory bowel disease (IBD) and the risk of dementia, including Alzheimer's dementia (AD) and vascular dementia (VD); however, these findings are inconsistent. It remains unclear whether these associations are causal.
METHODS:
We conducted a meta-analysis by systematically searching for observational studies on the association between IBD and dementia. Mendelian randomization (MR) analysis based on summary genome-wide association studies (GWASs) was performed. Genetic correlation and Bayesian co-localization analyses were used to provide robust genetic evidence.
RESULTS:
Ten observational studies involving 80,565,688 participants were included in this meta-analysis. IBD was significantly associated with dementia (risk ratio [ RR] =1.36, 95% CI = 1.04-1.78; I 2 = 84.8%) and VD ( RR = 2.60, 95% CI = 1.18-5.70; only one study), but not with AD ( RR = 2.00, 95% CI = 0.96-4.13; I 2 = 99.8%). MR analyses did not supported significant causal associations of IBD with dementia (dementia: odds ratio [ OR] = 1.01, 95% CI = 0.98-1.03; AD: OR = 0.98, 95% CI = 0.95-1.01; VD: OR = 1.02, 95% CI = 0.97-1.07). In addition, genetic correlation and co-localization analyses did not reveal any genetic associations between IBD and dementia.
CONCLUSION
Our study did not provide genetic evidence for a causal association between IBD and dementia risk. The increased risk of dementia observed in observational studies may be attributed to unobserved confounding factors or detection bias.
Humans
;
Mendelian Randomization Analysis
;
Inflammatory Bowel Diseases/complications*
;
Dementia/etiology*
;
Observational Studies as Topic
;
Genome-Wide Association Study
6.Analysis of coping styles of patients with Crohn's disease and its related influencing factors
Huilan ZHAI ; Xueqin LI ; Shan FU ; Shuangshuang XU ; Lu JIANG
Journal of Shenyang Medical College 2024;26(1):58-62
Objective:To investigate the current situation of coping styles in Crohn's disease patients and its related influencing factors.Methods:A total of 80 patients with Crohn's disease admitted to our hospital from Apri 2021 to Dec 2022 were selected to evaluate their coping styles with a simple coping style questionnaire,and relevant data were collected.The factors affecting the coping styles of Crohn's disease were analyzed by multivariable logistic regression.Results:Among the 80 patients,29 cases were negative coping,the incidence was 36.25% .There were 51 patients with positive coping(63.75% ).Educational level,simplified Crohn's disease activity index(CDAI)score,adverse psychology,social support and type D personality were associated with negative coping(P<0.05).Gender,age,family history,working status,monthly family income,place of residence,and marital status were not associated with negative coping in patients with Crohn's disease(P>0.05).Multivariable logistic regression analysis showed that education level of high school or below(OR=2.945,95% CI:1.139-7.614),higher CDAI score(OR=11.999,95% CI:4.387-32.815),poor psychology(OR=5.950,95% CI:2.180-16.239),low social support(OR=3.598,95% CI:1.370-9.448)and type D personality(OR=3.208,95% CI:1.118-8.904)were risk factors for negative coping in patients with Crohn's disease(P<0.05).Conclusions:The incidence of negative coping in patients with Crohn's disease is higher,which is related to high school education or below,high CDAI score,poor psychology,low social support,and type D personality.Therefore,clinical measures can be taken to promote patients to actively cope with the disease.
7.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
8.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
9.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
10.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.

Result Analysis
Print
Save
E-mail