1.Combined effects of soy isoflavone and lecithin on bone loss in ovariectomized mice
Sang Baek KIM ; Freshet ASSEFA ; Su Jeong LEE ; Eui Kyun PARK ; Sung Soo KIM
Nutrition Research and Practice 2021;15(5):541-554
BACKGROUND/OBJECTIVES:
Isoflavones (ISFs) are effective in preventing bone loss, but not effective enough to prevent osteoporosis. Mixtures of soy ISF and lecithin (LCT) were prepared and characterized in an attempt to improve the bone loss.MATERIALS/METHODS: The daidzein (DZ) and genistein (GN) solubility in soy ISF were measured using liquid chromatography-mass spectrometry. The change in the crystalline characteristics of soy ISF in LCT was evaluated using X-ray diffraction analysis.Pharmacokinetic studies were conducted to evaluate and compare ISF bioavailability. Animal studies with ovariectomized (OVX) mice were carried out to estimate the effects on bone loss. The Student's t-test was used to evaluate statistical significance.
RESULTS:
The solubility of DZ and GN in LCT was 125.6 and 9.7 mg/L, respectively, which were approximately 25 and 7 times higher, respectively, than those in water. The bioavailability determined by the area under the curve of DZ for the oral administration (400 mg/kg) of soy ISF alone and the soy ISF-LCT mixture was 13.19 and 16.09 µg·h/mL, respectively. The bone mineral density of OVX mice given soy ISF-LCT mixtures at ISF doses of 60 and 100 mg/kg daily was 0.189 ± 0.020 and 0.194 ± 0.010 g/mm3 , respectively, whereas that of mice given 100 mg/kg soy ISF was 0.172 ± 0.028 g/mm3 . The number of osteoclasts per bone perimeter was reduced by the simultaneous administration of soy ISF and LCT.
CONCLUSIONS
The effect of preventing bone loss and osteoclast formation by ingesting soy ISF and LCT at the same time was superior to soy ISF alone as the bioavailability of ISF may have been improved by the emulsification and solvation of LCT. These results suggest the possibility of using the combination of soy ISF and LCT to prevent osteoporosis.
2.Combined effects of soy isoflavone and lecithin on bone loss in ovariectomized mice
Sang Baek KIM ; Freshet ASSEFA ; Su Jeong LEE ; Eui Kyun PARK ; Sung Soo KIM
Nutrition Research and Practice 2021;15(5):541-554
BACKGROUND/OBJECTIVES:
Isoflavones (ISFs) are effective in preventing bone loss, but not effective enough to prevent osteoporosis. Mixtures of soy ISF and lecithin (LCT) were prepared and characterized in an attempt to improve the bone loss.MATERIALS/METHODS: The daidzein (DZ) and genistein (GN) solubility in soy ISF were measured using liquid chromatography-mass spectrometry. The change in the crystalline characteristics of soy ISF in LCT was evaluated using X-ray diffraction analysis.Pharmacokinetic studies were conducted to evaluate and compare ISF bioavailability. Animal studies with ovariectomized (OVX) mice were carried out to estimate the effects on bone loss. The Student's t-test was used to evaluate statistical significance.
RESULTS:
The solubility of DZ and GN in LCT was 125.6 and 9.7 mg/L, respectively, which were approximately 25 and 7 times higher, respectively, than those in water. The bioavailability determined by the area under the curve of DZ for the oral administration (400 mg/kg) of soy ISF alone and the soy ISF-LCT mixture was 13.19 and 16.09 µg·h/mL, respectively. The bone mineral density of OVX mice given soy ISF-LCT mixtures at ISF doses of 60 and 100 mg/kg daily was 0.189 ± 0.020 and 0.194 ± 0.010 g/mm3 , respectively, whereas that of mice given 100 mg/kg soy ISF was 0.172 ± 0.028 g/mm3 . The number of osteoclasts per bone perimeter was reduced by the simultaneous administration of soy ISF and LCT.
CONCLUSIONS
The effect of preventing bone loss and osteoclast formation by ingesting soy ISF and LCT at the same time was superior to soy ISF alone as the bioavailability of ISF may have been improved by the emulsification and solvation of LCT. These results suggest the possibility of using the combination of soy ISF and LCT to prevent osteoporosis.
3.Secretoneurin, a Neuropeptide, Enhances Bone Regeneration in a Mouse Calvarial Bone Defect Model
Freshet ASSEFA ; Jiwon LIM ; Ju-Ang KIM ; Hye Jung IHN ; Soomin LIM ; Sang-Hyeon NAM ; Yong Chul BAE ; Eui Kyun PARK
Tissue Engineering and Regenerative Medicine 2021;18(2):315-324
BACKGROUND:
This study investigates the effects of a neuropeptide, secretoneurin (SN), on bone regeneration in an experimental mouse model.
METHODS:
The effects of SN on cell proliferation, osteoblast marker genes expression, and mineralization were evaluated using the CCK-8 assay, quantitative reverse transcriptase polymerase chain reaction (RT-PCR), and alizarin red S staining, respectively. To examine the effects of SN on bone regeneration in vivo, bone defects were created in the calvaria of ICR mice, and 0.5 or 1 lg/ml SN was applied. New bone formation was analyzed by micro-computed tomography (micro-CT) and histology. New blood vessel formation was assessed by CD34 immunohistochemistry.
RESULTS:
SN had no significant effect on proliferation and mineralization of MC3T3-E1 cells. However, SN partially induced the gene expression of osteoblast differentiation markers such as runt-related transcription factor 2, alkaline phosphatase, collagen type I alpha 1, and osteopontin. A significant increase of bone regeneration was observed in SN treated calvarial defects. The bone volume (BV), BV/tissue volume, trabecular thickness and trabecular number values were significantly increased in the collagen sponge plus 0.5 or 1 lg/ml SN group (p < 0.01) compared with the control group. Histologic analysis also revealed increased new bone formation in the SN-treated groups. Immunohistochemical staining of CD34 showed that the SN-treated groups contained more blood vessels compared with control in the calvarial defect area.
CONCLUSION
SN increases new bone and blood vessel formation in a calvarial defect site. This study suggests that SN may enhance new bone formation through its potent angiogenic activity.
4.Secretoneurin, a Neuropeptide, Enhances Bone Regeneration in a Mouse Calvarial Bone Defect Model
Freshet ASSEFA ; Jiwon LIM ; Ju-Ang KIM ; Hye Jung IHN ; Soomin LIM ; Sang-Hyeon NAM ; Yong Chul BAE ; Eui Kyun PARK
Tissue Engineering and Regenerative Medicine 2021;18(2):315-324
BACKGROUND:
This study investigates the effects of a neuropeptide, secretoneurin (SN), on bone regeneration in an experimental mouse model.
METHODS:
The effects of SN on cell proliferation, osteoblast marker genes expression, and mineralization were evaluated using the CCK-8 assay, quantitative reverse transcriptase polymerase chain reaction (RT-PCR), and alizarin red S staining, respectively. To examine the effects of SN on bone regeneration in vivo, bone defects were created in the calvaria of ICR mice, and 0.5 or 1 lg/ml SN was applied. New bone formation was analyzed by micro-computed tomography (micro-CT) and histology. New blood vessel formation was assessed by CD34 immunohistochemistry.
RESULTS:
SN had no significant effect on proliferation and mineralization of MC3T3-E1 cells. However, SN partially induced the gene expression of osteoblast differentiation markers such as runt-related transcription factor 2, alkaline phosphatase, collagen type I alpha 1, and osteopontin. A significant increase of bone regeneration was observed in SN treated calvarial defects. The bone volume (BV), BV/tissue volume, trabecular thickness and trabecular number values were significantly increased in the collagen sponge plus 0.5 or 1 lg/ml SN group (p < 0.01) compared with the control group. Histologic analysis also revealed increased new bone formation in the SN-treated groups. Immunohistochemical staining of CD34 showed that the SN-treated groups contained more blood vessels compared with control in the calvarial defect area.
CONCLUSION
SN increases new bone and blood vessel formation in a calvarial defect site. This study suggests that SN may enhance new bone formation through its potent angiogenic activity.
5.The Neuropeptide Spexin Promotes the Osteoblast Differentiation of MC3T3-E1 Cells via the MEK/ERK Pathway and Bone Regeneration in a Mouse Calvarial Defect Model
Freshet ASSEFA ; Ju Ang KIM ; Jiwon LIM ; Sang-Hyeon NAM ; Hong-In SHIN ; Eui Kyun PARK
Tissue Engineering and Regenerative Medicine 2022;19(1):189-202
BACKGROUND:
The neural regulation of bone regeneration has emerged recently. Spexin (SPX) is a novel neuropeptide and regulates multiple biological functions. However, the effects of SPX on osteogenic differentiation need to be further investigated. Therefore, the aim of this study is to investigate the effects of SPX on osteogenic differentiation, possible underlying mechanisms, and bone regeneration.
METHODS:
In this study, MC3T3-E1 cells were treated with various concentrations of SPX. Cell proliferation, osteogenic differentiation marker expressions, alkaline phosphatase (ALP) activity, and mineralization were evaluated using the CCK-8 assay, reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR), ALP staining, and alizarin red S staining, respectively. To determine the underlying molecular mechanism of SPX, the phosphorylation levels of signaling molecules were examined via western blot analysis. Moreover, in vivo bone regeneration by SPX (0.5 and 1 lg/ll) was evaluated in a calvarial defect model. New bone formation was analyzed using micro-computed tomography (micro-CT) and histology.
RESULTS:
The results indicated that cell proliferation was not affected by SPX. However, SPX significantly increased ALP activity, mineralization, and the expression of genes for osteogenic differentiation markers, including runt-related transcription factor 2 (Runx2), Alp, collagen alpha-1(I) chain (Col1a1), osteocalcin (Oc), and bone sialoprotein (Bsp). In contrast, SPX downregulated the expression of ectonucleotide pyrophosphatase/phosphodiesterase 1 (Enpp1). Moreover, SPX upregulated phosphorylated mitogen-activated protein kinase kinase (MEK1/2) and extracellular signal-regulated kinase (ERK1/2). in vivo studies, micro-CT and histologic analysis revealed that SPX markedly increased a new bone formation.
CONCLUSION
Overall, these results demonstrated that SPX stimulated osteogenic differentiation in vitro and increased in vivo bone regeneration via the MEK/ERK pathway.