1.Progress in molecular diagnosis of fragile X syndrome.
Xiao-yan GUO ; Juan LIAO ; Feng-hua LAN
Chinese Journal of Medical Genetics 2012;29(3):296-299
Fragile X mental retardation 1 is the gene underlying fragile X syndrome (FXS). Its product, fragile X mental retardation protein, is closely involved with development of brain and neurons. PCR and Southern blotting have been the major methods for laboratory diagnosis of FXS. In this article, the progress in the molecular diagnosis of FXS is reviewed.
Fragile X Mental Retardation Protein
;
genetics
;
Fragile X Syndrome
;
diagnosis
;
genetics
;
Humans
;
Pathology, Molecular
;
methods
2.Fragile X-associated tremor/ataxia syndrome.
Wei-wei HAN ; Lin ZHANG ; Hong JIANG ; Bei-sha TANG
Chinese Journal of Medical Genetics 2011;28(1):52-55
Fragile X-associated tremor/ataxia syndrome(FXTAS) is a neurodegenerative disease caused by FMR1 gene permutation(PM). The main clinical manifestations are intention tremor and/or ataxia, and the pathogenesis was related to RNA toxicity. In this paper, the research progress of clinical manifestatios, pathological characteristics, epidemiology and molecular mechanisms will be reviewed.
Ataxia
;
genetics
;
Female
;
Fragile X Mental Retardation Protein
;
genetics
;
Fragile X Syndrome
;
complications
;
diagnosis
;
genetics
;
pathology
;
Humans
;
Male
;
Tremor
;
genetics
3.Analysis and prenatal diagnosis of FMR1 gene mutations among patients with unexplained mental retardation.
Shikun LUO ; Wenbin HE ; Yi LIAO ; Weilin TANG ; Xiurong LI ; Liang HU ; Juan DU ; Qianjun ZHANG ; Yueqiu TAN ; Ge LIN ; Wen LI
Chinese Journal of Medical Genetics 2021;38(5):439-445
OBJECTIVE:
To analyze the (CGG)n repeats of FMR1 gene among patients with unexplained mental retardation.
METHODS:
For 201 patients with unexplained mental retardation, the (CGG)n repeats of the FMR1 gene were analyzed by PCR and FragilEase
RESULTS:
For the 201 patients with unexplained mental retardation, 15 were identified with full mutations of the FMR1 gene. The prevalence of fragile X syndrome (FXS) in patients with unexplained mental retardation was determined as 7.5% (15/201). Prenatal diagnosis was provided for 6 pregnant women with pre- or full mutations. Analysis revealed that women with mental retardation and full FMR1 mutations exhibited a skewed XCI pattern with primary expression of the X chromosome carrying the mutant allele.
CONCLUSION
FXS has a high incidence among patients with unexplained mental retardation. Analysis of FMR1 gene (CGG)n repeats in patients with unexplained mental retardation can facilitate genetic counseling and prenatal diagnosis for their families. FMR1 gene (CGG)n repeats screening should be recommended for patients with unexplained mental retardation.
Female
;
Fragile X Mental Retardation Protein/genetics*
;
Fragile X Syndrome/genetics*
;
Humans
;
Intellectual Disability/genetics*
;
Mutation
;
Pregnancy
;
Prenatal Diagnosis
4.Clinical practice guidelines for Fragile X syndrome.
CLINICAL GENETICS GROUP OF MEDICAL GENETICIST BRANCH OF CHINESE MEDICAL DOCTOR ASSOCIATION ; CLINICAL GENETICS GROUP OF MEDICAL GENETICS BRANCH OF CHINESE MEDICAL ASSOCIATION ; GENETIC DISEASE PREVENTION AND CONTROL GROUP OF PROFESSIONAL COMMITTEE FOR BIRTH DEFECT PREVENTION AND CONTROL OF CHINESE PREVENTIVE MEDICINE ASSOCIATION ; Ranhui DUAN ; Guangxu LI ; Hui XI ; Ying PENG ; Lingqian WU
Chinese Journal of Medical Genetics 2022;39(11):1181-1186
Fragile X syndrome (FXS) is the most common monogenic form of inherited intellectual disability and autism spectrum disorder (ASD). More than 99% of individuals with FXS are caused by the unstable expansion of CGG repeats located within the 5'-untranslated region of the FMR1 gene. The clinical features of FXS include various degrees of cognitive deficit, physical, behavioral and psychiatric problems. Early treatment and prevention from having further affected children can be guided by molecular genetic testing of the FMR1 gene. The following guideline has combined the relevant research, guidelines and consensus worldwide, and summarized the genetic knowledge and clinical treatment for FXS in order to achieve a standardized diagnosis, treatment and prevention for patients and families affected by this disease.
Child
;
Humans
;
Autism Spectrum Disorder/therapy*
;
Fragile X Mental Retardation Protein/genetics*
;
Fragile X Syndrome/therapy*
;
Intellectual Disability/genetics*
5.Analysis of AGG interspersion of the FMR1 gene in fragile X syndrome.
Lifang TANG ; Bing XIAO ; Yan XU ; Xing JI ; Wenting JIANG ; Xiaoqing LIU ; Jiong TAO
Chinese Journal of Medical Genetics 2015;32(1):11-15
OBJECTIVETo analyze (CGG)n repeats sequence and AGG interspersion correlated with unstable expansion of FMR1 gene in a general Chinese population.
METHODSAmplideX FMR1 PCR Kit was used to amplify 380 X chromosomes from randomly selected 176 males and 102 females, 11 permutation carriers and 10 full mutation patients have served as controls. Results of capillary electrophoresis were analyzed with GeneMapper software Version 4.0. SPSS 11.0 software was used for statistical analysis.
RESULTSThe ratio of heterozygous females was 64.70%. The number of alleles in general males and females was 15 and 14, the classes of AGG pattern was 26 and 27, respectively. The range of alleles was between 17 to 45 CGG repeats in males and 21 to 44 CGG repeats in females, and 1 male was identified as gray zone carrier. The most frequent allele was 29 CGG repeats, which was followed by 30 and 36 repeats, while 28 CGG repeats were absent. The most common AGG pattern was 9A9A9, 99.21% of the population was detected with different forms and numbers of AGG interruption, and 6A interruption pattern was found in 10.02% samples especially in individuals with more CGG repeats. However, 57.58% of control samples had no AGG interruption, and none of the controls had 6A interruption pattern. No significant difference was observed in allele frequent distribution of (CGG)n repeats and AGG interspersion patterns between the males and females (P > 0.05), and AGGs was significantly different between general population and controls (P < 0.05).
CONCLUSIONAGGs and AGG pattern may have important roles in maintaining (CGG)n stability in general population of China, 9A9A6A9 may be a special pattern for preventing (CGG)n unstable expansion in Asian populations.
Adolescent ; Adult ; Alleles ; Female ; Fragile X Mental Retardation Protein ; genetics ; Fragile X Syndrome ; genetics ; Humans ; Male ; Middle Aged ; Trinucleotide Repeats
6.Methylation analysis of CpG island DNA of FMR1 gene in the fragile X syndrome.
Ding-wen WU ; Zhi-wei ZHU ; Zheng-yan ZHAO ; Yi-ping QU ; Jian-bin YANG
Chinese Journal of Medical Genetics 2013;30(1):60-63
OBJECTIVETo establish a method of methylation-sensitive restriction enzymes based quantitative PCR (MSRE-qPCR) for analysis of CpG island DNA of FMR1 gene, and to assess its value for molecular diagnosis of fragile X syndrome.
METHODSThirty boys with mental retardation and abnormal repeats of 5'(CGG)n in the FMR1 gene and 20 mothers were analyzed by conventional PCR screening. Eag I was used to digest genomic DNA, and qPCR was performed to amplify CpG island in the FMR1 gene using both undigested and digested templates. Raw Ct values were obtained through quantitative PCR amplification. The degree of CpG island methylation was calculated by 2 - U+0394 U+0394 Ct. The result of MSRE-qPCR was verified by Southern blotting. 30 healthy females and 30 healthy males were used as controls to optimize the established MSRE-qPCR method.
RESULTSThe ranges of 2 - U+0394 U+0394 Ct value for normal methylation, partial methylation and full methylation were determined. Among the 30 patients, 3 were found to have partial methylation of CpG island of the FMR1 gene, and 27 were found to have full methylation (3/30 results were verified by Southern blotting). Only 7 mothers were found abnormal methylation of CpG island of FMR1 gene, whilst the remaining 13 mothers were normal.
CONCLUSIONMSRE-qPCR is a quick and reliable method for quantitative analysis of CpG island methylation status in FMR1 gene, which may provide a new strategy for the diagnosis of fragile X syndrome.
CpG Islands ; DNA Methylation ; Female ; Fragile X Mental Retardation Protein ; genetics ; Fragile X Syndrome ; diagnosis ; genetics ; Humans ; Male ; Sex Factors
7.Prenatal diagnosis for 30 women carrying a FMR1 mutation.
Wen HUANG ; Jin XUE ; Huaixing KANG ; Xinxin GUAN ; Yanling TENG ; Lingqian WU ; Ranhui DUAN
Chinese Journal of Medical Genetics 2019;36(9):866-869
OBJECTIVE:
To determine the CGG repeat number and methylation status of FMR1 gene for fetuses whose mothers have carried a FMR1 mutation.
METHODS:
For 30 pregnant women, the fetal CGG repeat number was determined with a GC-rich PCR system by using chorionic villus, amniotic fluid or umbilical blood samples. The methylation status of the FMR1 gene was confirmed with Southern blotting.
RESULTS:
In total 30 prenatal diagnoses were performed for 29 carriers of FMR1 gene mutations and 1 with FMR1 gene deletion mosaicism. Three fetuses were found to carry premutations, 9 were with full mutations and 1 with mosaicism of premutation and full mutations. Eighteen fetuses were normal.
CONCLUSION
Considering the genetic complexity of Fragile X syndrome (FXS), single method may not suffice accurate determination of their genetic status. The pitfalls and technical limitations of protocols requires adoption of personalized strategy for its prenatal diagnosis.
Female
;
Fragile X Mental Retardation Protein
;
genetics
;
Fragile X Syndrome
;
diagnosis
;
Heterozygote
;
Humans
;
Mutation
;
Pregnancy
;
Prenatal Diagnosis
8.Analysis of FMR1 gene CGG repeats among patients with diminished ovarian reserve.
Wenbin HE ; Weilin TANG ; Yi LIAO ; Wen LI ; Fei GONG ; Guangxiu LU ; Ge LIN ; Juan DU ; Yueqiu TAN
Chinese Journal of Medical Genetics 2021;38(4):343-346
OBJECTIVE:
To explore the correlation between Fragile X mental retardation gene-1 (FMR1) gene CGG repeats with diminished ovarian reserve (DOR).
METHODS:
For 214 females diagnosed with DOR, DNA was extracted from peripheral blood samples. FMR1 gene CGG repeats were determined by PCR and capillary electrophoresis.
RESULTS:
Three DOR patients were found to carry FMR1 premutations, and one patient was found to carry gray zone FMR1 repeats. After genetic counseling, one patient and the sister of another patient, both carrying FMR1 permutations, conceived naturally. Prenatal diagnosis showed that both fetuses have carried FMR1 permutations.
CONCLUSION
FMR1 gene permutation may be associated with DOR. Determination of FMR1 gene CGG repeats in DOR patients can provide a basis for genetic counseling and guidance for reproduction.
Female
;
Fragile X Mental Retardation Protein/metabolism*
;
Fragile X Syndrome/genetics*
;
Humans
;
Ovarian Diseases
;
Ovarian Reserve/genetics*
;
Primary Ovarian Insufficiency/genetics*
;
Trinucleotide Repeats/genetics*
9.Tri-primer-florescence PCR-Sanger sequencing method for screening of full and pre-mutations of FMR1 gene.
Sha SHA ; Xue HE ; Dongya YUAN ; Jianfang ZHANG ; Longli KANG
Chinese Journal of Medical Genetics 2016;33(6):844-848
OBJECTIVETo screen for CGG repeats in the FMR1 gene among patients with fragile X syndrome and carriers of pre-mutations.
METHODSPotential full and pre-mutations of the FMR1 gene were detected with a Tri-primer-florescence PCR-Sanger sequencing method. The results were validated with positive and negative controls.
RESULTSAll positive and negative controls were confirmed. A male patient was found to have > 200 CGG repeats (full mutation). For a pregnant women who was heterozygous for 35/115 CGG repeats, > 200 CGG repeats were also found with amniotic fluid sample from her fetus who was a male. The result was confirmed by following selective abortion with informed consent.
CONCLUSIONTri-primer-florescence PCR-Sanger sequencing is a simple, effective and reliable method for routine screening of patients/carriers with full/pre-mutations of the FMR1 gene in the population.
DNA Primers ; genetics ; Female ; Fluorescence ; Fragile X Mental Retardation Protein ; genetics ; Fragile X Syndrome ; genetics ; Humans ; Male ; Mutation ; genetics ; Polymerase Chain Reaction ; methods
10.Fragile X syndrome and epilepsy.
Li-Feng QIU ; Yan-Hong HAO ; Qing-Zhang LI ; Zhi-Qi XIONG
Neuroscience Bulletin 2008;24(5):338-344
Fragile X syndrome (FXS) is one of the most prevalent mental retardations. It is mainly caused by the loss of fragile X mental retardation protein (FMRP). FMRP is an RNA binding protein and can regulate the translation of its binding RNA, thus regulate several signaling pathways. Many FXS patients show high susceptibility to epilepsy. Epilepsy is a chronic neurological disorder which is characterized by the recurrent appearance of spontaneous seizures due to neuronal hyperactivity in the brain. Both the abnormal activation of several signaling pathway and morphological abnormality that are caused by the loss of FMRP can lead to a high susceptibility to epilepsy. Combining with the research progresses on both FXS and epilepsy, we outlined the possible mechanisms of high susceptibility to epilepsy in FXS and tried to give a prospect on the future research on the mechanism of epilepsy that happened in other mental retardations.
Brain
;
physiopathology
;
Epilepsy
;
etiology
;
genetics
;
pathology
;
Fragile X Mental Retardation Protein
;
genetics
;
metabolism
;
Fragile X Syndrome
;
complications
;
genetics
;
Humans
;
RNA-Binding Proteins
;
metabolism