1.Expression of antigens of foot-and-mouth disease virus in plants: a review.
Yuting CAI ; Yi RU ; Kun SUN ; Ji ZHANG ; Jianping WU ; Dan LI ; Hanqing FENG
Chinese Journal of Biotechnology 2023;39(4):1548-1561
Foot-and-mouth disease (FMD) is an acute, severe, and highly contagious infectious disease caused by foot-and-mouth disease virus (FMDV), which seriously endangers the development of animal husbandry. The inactivated FMD vaccine is the main product for the prevention and control of FMD, which has been successfully applied to control the pandemic and outbreak of FMD. However, the inactivated FMD vaccine also has problems, such as the instability of antigen, the risk of spread of the virus due to incomplete inactivation during vaccine production, and the high cost of production. Compared with traditional microbial and animal bioreactors, production of antigens in plants through transgenic technology has some advantages including low cost, safety, convenience, and easy storage and transportation. Moreover, since antigens produced from plants can be directly used as edible vaccines, no complex processes of protein extraction and purification are required. But, there are some problems for the production of antigens in plants, which include low expression level and poor controllability. Thus, expressing the antigens of FMDV in plants may be an alternative mean for production of FMD vaccine, which has certain advantages but still need to be continuously optimized. Here we review the main strategies for expressing active proteins in plants, as well as the research progress on the expression of FMDV antigens in plants. We also discuss the current problems and challenges encountered, with the aim to facilitate related research.
Animals
;
Foot-and-Mouth Disease Virus/genetics*
;
Foot-and-Mouth Disease/prevention & control*
;
Antigens, Viral/genetics*
;
Viral Vaccines
2.Progress in insertion sites for foreign sequence of foot and mouth disease virus.
Yan ZHANG ; Yonghao HU ; Fan YANG ; Haixue ZHENG
Chinese Journal of Biotechnology 2014;30(2):175-181
With the progess in studying gene structure and function of foot and mouth disease virus (FMDV), FMDV can express exogenous genes in different sites. Through transforming and modifying FMDV can achieve different application purposes such as improving virus titer, introducing tag, improving immune responses, and reducing pathogenicity. From the perspective of FMDV receiving inserted exogenous gene, this paper mainly describes the latest relevant developments of FMDV's expression to exogenous gene.
Foot-and-Mouth Disease Virus
;
genetics
;
Genetic Engineering
;
Mutagenesis, Insertional
3.Effect of amino acid site modification on stability of foot-and-mouth disease virus-like particles.
Luying LI ; Hu DONG ; Yuanlu LU ; Miaomiao WANG ; Shiqi SUN ; Huichen GUO
Chinese Journal of Biotechnology 2021;37(7):2435-2442
The stability of virus-like particles (VLPs) is currently the main factor affecting the quality of foot-and-mouth disease VLPs vaccines. In order to further improve the quality of the VLPs vaccine of foot-and-mouth disease (FMD), three amino acid modification sites were designed and screened through kinetic analysis software, based on the three-dimensional structure of FMDV. The three mutant recombinant plasmids were successfully prepared by the point mutation kit, transformed into Escherichia coli strain BL21 and expressed in vitro. After purification by Ni ion chromatography column, SDS-PAGE proved that the three amino acid mutations did not affect the expression of the target protein. The results of the stability study of three FMD mutant VLPs obtained by in vitro assembly show that the introduction of internal hydrophobic side chain amino acids made the morphology of VLPs more uniform (N4017W), and their stability was significantly improved compared to the other two VLPs. The internal hydrophobic force of the capsid contributes to the formation of VLPs and helps to maintain the stability of the capsid, providing new experimental ideas for improving the quality of VLPs vaccines, and helping to promote the development of VLPs vaccines.
Amino Acids
;
Animals
;
Capsid Proteins/genetics*
;
Foot-and-Mouth Disease/prevention & control*
;
Foot-and-Mouth Disease Virus/genetics*
;
Kinetics
;
Vaccines, Virus-Like Particle/genetics*
;
Viral Vaccines/genetics*
4.Construction, expression and identification of chimeric foot-and-mouth disease virus-like particles.
Ronghuan LIU ; Huichen GUO ; Ping DU ; Hu DONG ; Mengnan GUO ; Shiqi SUN
Chinese Journal of Biotechnology 2020;36(7):1305-1313
To improve the specific recognition and presentation of virus-like particle (VLPs), and to develop immune-targeted VLPs vaccine, the gene fragment encoding OVA₂₅₇₋₂₆₄ peptide was inserted into the VP3 gene of foot-and-mouth disease virus (FMDV) between the 171th and 172th amino acids (aa) or 173th and 174th aa by reverse PCR. The recombinant proteins were expressed by using Escherichia coli and assembled into chimeric VLP (VLP(OVA)) in vitro after purification. The VLP(OVA) was measured by dynamic light scattering and transmission electron microscopy. The recombinant protein and the assembled VLPs were evaluated by Western blotting, enzyme-linked immunosorbent assay and laser scanning confocal microscopy to confirm the insertion of OVA₂₅₇₋₂₆₄ peptide into VP3 and its location. The results show that insertion of OVA₂₅₇₋₂₆₄ into the 173th and 174th aa of FMDV VP3 did not affect the assembly of VLPs. The VLP(OVA) in size was larger than VLPs, and the OVA₂₅₇₋₂₆₄ peptide was located on the surface of VLP(OVA).
Animals
;
Escherichia coli
;
genetics
;
Foot-and-Mouth Disease
;
virology
;
Foot-and-Mouth Disease Virus
;
genetics
;
Recombinant Proteins
;
genetics
;
metabolism
;
Vaccines, Virus-Like Particle
5.Advances in reverse genetics-based vaccines of foot and mouth disease.
Bo YANG ; Fan YANG ; Song-Hao WANG ; Yan ZHANG ; Wei-Jun CAO ; Hong YIN ; Hai-Xue ZHENG
Chinese Journal of Virology 2014;30(2):213-220
Reverse-genetic engineering of foot and mouth disease virus (FMDV) can improve the productivity, antigen matching, antigen stability, immune response ability, and biological safety of vaccines, so vaccine candidates with anticipated biological characteristics can be promptly achieved. Negative influence in taming of virulent strains can also be decreased or avoided. Reverse genetics not only make up for deficiencies like limitation of viral nature, low success rate, and time and energy consuming, but also realize more active designing of vaccines. Therefore, reverse genetics is significant in improving integral quality and efficiency of vaccines. In this review, we use FMDV vaccines as an example to summarize improvement in biological characteristics of virulent strains and provide a reference for related researches.
Animals
;
Antibodies, Viral
;
immunology
;
Foot-and-Mouth Disease
;
immunology
;
prevention & control
;
virology
;
Foot-and-Mouth Disease Virus
;
genetics
;
immunology
;
Reverse Genetics
;
Viral Vaccines
;
genetics
;
immunology
6.Construction of an infectious cDNA clone derived from foot-and-mouth disease virus O/QYYS/s/06.
Shousheng LU ; Qizu ZHAO ; Xiangtao LIU ; Yanwei SUN ; Tao REN ; Guihong ZHANG ; Wenbao QI ; Yunfeng ZHA ; Lingchen KONG ; Han ZHANG ; Huiying FAN ; Ming LIAO
Chinese Journal of Biotechnology 2009;25(7):982-986
After sequencing, we amplified and cloned foot-and-mouth disease virus (FMDV) O/QYYS/s/06 whole genome by three fragments. These three fragments were cloned into vector P43 one by one to construct recombinant plasmid P43C, which carried the full-length cDNA of FMDV O/QYYS/s/06. Then, plasmid P43C and plasmid T7 expressing T7 RNA polymerase were co-transfected into BHK-21 cells. After 48 h, we harvested the culture broth from transfected BHK-21 cells and inoculated into 2-3 day-old sucking mice. After four generation passage, the virus harvested from sucking mice was confirmed to be type O FMDV by the indirect hemagglutination test, sucking mice's neutralization test and sequencing. The results showed that we have successfully constructed the full-length cDNA clone of FMDV O/QYYS/s/06 strain.
Animals
;
Animals, Newborn
;
Cloning, Molecular
;
DNA, Complementary
;
genetics
;
DNA, Viral
;
biosynthesis
;
genetics
;
Foot-and-Mouth Disease
;
virology
;
Foot-and-Mouth Disease Virus
;
classification
;
genetics
;
pathogenicity
;
Mice
;
Transcription, Genetic
;
Transfection
7.A reverse transcription loop-mediated isothermal amplification assay to rapidly diagnose foot-and-mouth disease virus C.
Yao Zhong DING ; Jian Hua ZHOU ; Li Na MA ; Yan Ni QI ; Gang WEI ; Jie ZHANG ; Yong Guang ZHANG
Journal of Veterinary Science 2014;15(3):423-426
A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed to rapidly detect foot-and-mouth disease virus serotype C (FMDV C). By testing 10-fold serial dilutions of FMDV C samples, sensitivity of the FMDV C RT-LAMP was found to be 10 times higher than that of conventional reverse transcription-PCR (RT-PCR). No cross-reactivity with A, Asia 1, or O FMDV or swine vesicular disease virus (SVDV) indicated that FMDV C RT-LAMP may be an exciting novel method for detecting FMDV C.
Animals
;
Foot-and-Mouth Disease/*diagnosis
;
Foot-and-Mouth Disease Virus/genetics
;
Nucleic Acid Amplification Techniques/*methods/veterinary
;
Reverse Transcriptase Polymerase Chain Reaction/veterinary
;
Reverse Transcription/genetics
;
Sensitivity and Specificity
8.Construction and identification of infectious molecular clone of foot-and-mouth disease virus strain O/CHINA/99.
Jian-liang LV ; Yong-guang ZHANG ; Yong-lu WANG ; Li PAN ; Li-kuan LIU ; Shou-tian JIANG ; Wei-de ZHANG
Chinese Journal of Virology 2009;25(1):58-62
Nine primers were designed for the full-length genome of O/CHINA/99 and each sequence fragment was obtained by RT-PCR, and cloned into pOK12 vecter, the full-length genome cDNA clone of O/CHINA/99 was identified by restriction enzymes digestion, PCR, and the whole genome sequencing. The results showed that the O/CHINA/99 whole genome was formed with the length of 8200 nt. The nucleotide sequence of the full-length cDNA shared 99.1% homology with its prototype. RNA synthesized in vitro by means of a bacteriophage T7 promter inserted in front of the cDNA led to the production of infectious particle upon transfection of BHK-21 cell using lipofectamine reagent, as shown by cytopathic effects. The rescued virus had high pathogenicity in mice by endermic infection too. All the results showed that an infectious molecular clone was successfully constructed and rescued virus could be obtained.
Animals
;
Animals, Newborn
;
Cell Line
;
Cloning, Molecular
;
Cricetinae
;
DNA, Complementary
;
genetics
;
Foot-and-Mouth Disease
;
virology
;
Foot-and-Mouth Disease Virus
;
genetics
;
pathogenicity
;
Humans
;
Mice
;
Models, Genetic
;
Polymerase Chain Reaction
9.High expression of the foot-and-mouth disease's structural protein P1 in Escherichia coli and analysis of its biology activity.
Xiao-Lan YU ; Shao-Bo XIAO ; Liu-Rong FANG ; Meng-Yu HU ; Lin YAN ; Xiao-Hui DONG ; Huan-Chun CHEN
Chinese Journal of Biotechnology 2005;21(1):163-166
Foot-and-mouth disease virus (FMDV) is the aetiological angent of a highly contagious viral disease. The complete gene encoding the structural protein of FMDV (P1) was subcloned into expression vector pGEX-KG, resulting in the fusion expression plasmid pKG-P1. After transformed into E. coli BL21(DE3) and induced by IPTG, the results of SDS-PAGE showed that the GST-P1 fusion protein was expressed in high level. The molecular weight of the fusion protein wa 110kD and the expressed products were soluble. Western-blotting was performed to confirm that the expressed fusion protein could specifically react with antiserum against FMDV. The fusion proteins were further purified by GST purification kit and an indirect ELISA (P1-ELISA) based on the purified proteins was developed. Comparison between P1-ELISA and the standard indirect haemagglutinin assay showed the two methods had 87 per cent agreement by detecting 864 serum samples, indicating the purified P1 protein was specific as the antigen of indirect P1-ELISA.
Capsid Proteins
;
biosynthesis
;
genetics
;
immunology
;
Escherichia coli
;
genetics
;
metabolism
;
Foot-and-Mouth Disease Virus
;
genetics
;
Recombinant Fusion Proteins
;
biosynthesis
;
genetics
;
immunology
10.Research into the Pathogenicity of Enterovirus 71.
Lele SUN ; Hongling WEN ; Zhiyu WANG
Chinese Journal of Virology 2015;31(2):192-196
Enterovirus 71 (EV71) is a major causative agent of hand, foot and mouth disease (HFMD). belongs to family Picornaviridae, genus Enterovirus, species A. EV71 infection usually affects subjects aged <5 years. HFMD caused by EV71 infection is usually mild in children. However, in some cases EV71 infection can lead to severe neurogenic disease and even death. EV71 infection has caused epidemic worldwide (especially in the Asia Pacific). HFMD caused by EV71 has become a major public-health prol lem across the Asia Pacific. In EV71 infection, the pathogenesis is determined by viral and host factor, Here, we review research on host susceptibility and how EV71 suppresses immune and intracellular ri
Animals
;
Enterovirus A, Human
;
genetics
;
pathogenicity
;
physiology
;
Hand, Foot and Mouth Disease
;
virology
;
Humans
;
Virulence
;
Virus Attachment
;
Virus Replication