1.A mark-release-recapture experiment with Anopheles sinensis in the northern part of Gyeonggi-do, Korea.
Shin Hyeong CHO ; Hyeong Woo LEE ; E Hyun SHIN ; Hee Il LEE ; Wook Gyo LEE ; Chong Han KIM ; Jong Taek KIM ; Jong Soo LEE ; Won Ja LEE ; Gi Gon JUNG ; Tong Soo KIM
The Korean Journal of Parasitology 2002;40(3):139-148
In order to study the range of flight and feeding activity of Anopheles sinensis, the dispersal experiment was conducted in Paju city, located in the northern part of Gyeonggi-do, Republic of Korea, during the period of 7th to 28th September 1998. Unfed females An. sinensis were collected in cowshed and released after being marked with fluorescent dye at 23:00 hours on the same day. Released female mosquitoes were recaptured everyday during 21 days using light traps, which were set at 10 sites in the cowsheds located 1, 3, 6, 9 and 12 km north-northwest and north-northeast and at 3 sites located 1, 6 and 9 km toward south-west from the release point. In addition, to study the longest flight distance in one night, we set the light traps at 16 and 20 km toward north-northeast from the release site. All the collected mosquitoes were placed on filter papers and observed on UV transilluminator after treatment with one drop of 100% ethanol. Out of 12,773 females of An. sinensis released, 194 marked females mosquitoes were recaptured, giving 1.52% recapture rate. Of 194, 72 mosquitoes (37.1%) were recaptured in light traps from three places set at 1 km from the release point, 57 mosquitoes (29.4%) from two places at 1-3 km, 41 mosquitoes (21.1%) from three places at 3-6 km, 20 mosquitoes (10.3%) from three places at 6-9 km, and 4 mosquitoes (2.1%) from two places at 9-12 km. Since 170 female mosquitoes (87.6%) out of 194 marked mosquitoes were captured within 6 km from the release point, this flight radius represents the main activity area. An sinensis was found to be able to fly at least 12 km during one night.
Animals
;
Anopheles/*physiology
;
Entomology/methods
;
Feeding Behavior
;
Female
;
*Flight, Animal
;
Fluorescent Dyes
;
Korea
;
Support, Non-U.S. Gov't
;
Time Factors
2.Proteomic and transcriptomic analysis of visual long-term memory in Drosophila melanogaster.
Huoqing JIANG ; Qinlong HOU ; Zhefeng GONG ; Li LIU
Protein & Cell 2011;2(3):215-222
The fruit fly, Drosophila melanogaster, is able to discriminate visual landmarks and form visual long-term memory in a flight simulator. Studies focused on the molecular mechanism of long-term memory have shown that memory formation requires mRNA transcription and protein synthesis. However, little is known about the molecular mechanisms underlying the visual learning paradigm. The present study demonstrated that both spaced training procedure (STP) and consecutive training procedure (CTP) would induce long-term memory at 12 hour after training, and STP caused significantly higher 12-h memory scores compared with CTP. Label-free quantification of liquid chromatography-tandem mass spectrometry (LC-MS/MS) and microarray were utilized to analyze proteomic and transcriptomic differences between the STP and CTP groups. Proteomic analysis revealed 30 up-regulated and 27 down-regulated proteins; Transcriptomic analysis revealed 145 up-regulated and 129 down-regulated genes. Among them, five candidate genes were verified by quantitative PCR, which revealed results similar to microarray. These results provide insight into the molecular components influencing visual long-term memory and facilitate further studies on the roles of identified genes in memory formation.
Animals
;
Conditioning (Psychology)
;
physiology
;
Drosophila Proteins
;
genetics
;
metabolism
;
Drosophila melanogaster
;
genetics
;
metabolism
;
physiology
;
Flight, Animal
;
physiology
;
Gene Expression Profiling
;
methods
;
Memory
;
physiology
;
Oligonucleotide Array Sequence Analysis
;
Proteomics
;
methods
;
Time Factors
;
Vision, Ocular
;
physiology