1.Involvement of Sox-4 in the cytochrome c-dependent AIF-independent apoptotic pathway in HeLa cells induced by delta12-prostaglandin J2.
Boe Eun KIM ; Jeong Hwa LEE ; Ho Shik KIM ; Oh Joo KWON ; Seong Whan JEONG ; In Kyung KIM
Experimental & Molecular Medicine 2004;36(5):444-453
delta12-Prostaglandin (PG) J2 is known to elicit an anti-neoplastic effects via apoptosis induction. Previous study showed delta12-PGJ2-induced apoptosis utilized caspase cascade through cytochrome c-dependent pathways in HeLa cells. In this study, the cellular mechanism of delta12-PGJ2- induced apoptosis in HeLa cells, specifically, the role of two mitochondrial factors; bcl-2 and apoptosis-inducing factor (AIF) was investigated. Bcl-2 attenuated delta12-PGJ2-induced caspase activation, loss of mitochondrial transmembrane potential (delta psi m), nuclear fragmentation, DNA laddering, and growth curve inhibition for approximately 24 h, but not for longer time. AIF was not released from mitochondria, even if the delta psi m was dissipated. One of the earliest events observed in delta12-PGJ2-induced apoptotic events was dissipation of delta psi m, the process known to be inhibited by bcl-2. Pre-treatment of z-VAD- fmk, the pan-caspase inhibitor, resulted in the attenuation of delta psi m depolarization in delta12-PGJ2- induced apoptosis. Up-regulation of Sox-4 protein by delta12-PGJ2 was observed in HeLa and bcl-2 overexpressing HeLa B4 cell lines. Bcl-2 overexpression did not attenuate the expression of Sox-4 and its expression coincided with other apoptotic events. These results suggest that delta12-PGJ2 induced Sox-4 expression may activate another upstream caspases excluding the caspase 9-caspase 3 cascade of mitochondrial pathway. These and previous findings together suggest that delta12-PGJ2-induced apoptosis in HeLa cells is caspase-dependent, AIF-independent events which may be affected by Sox-4 protein expression up-regulated by delta12-PGJ2.
Amino Acid Chloromethyl Ketones/pharmacology
;
Antineoplastic Agents/*pharmacology
;
Apoptosis/drug effects/*physiology
;
Caspases/physiology
;
Cytochromes c/physiology
;
Female
;
Flavoproteins/metabolism/*physiology
;
Hela Cells
;
High Mobility Group Proteins/*physiology
;
Humans
;
Membrane Proteins/metabolism/*physiology
;
Mitochondria/metabolism/physiology
;
Prostaglandin D2/*pharmacology
;
Protein Transport/physiology
;
Proto-Oncogene Proteins c-bcl-2/biosynthesis/*physiology
;
Research Support, Non-U.S. Gov't
;
Trans-Activation (Genetics)
;
Trans-Activators/*physiology
2.Expression and characterization of the flavoprotein domain of gp91phox.
Journal of Veterinary Science 2000;1(1):19-26
Truncated forms of gp91(phox) were expressed in E. coli in which the N-terminal hydrophobic transmembrane region was replaced with a portion of the highly soluble bacterial protein thioredoxin (TRX). TRX-gp91(phox) (306-569), which contains the putative FAD and NADPH binding sites, showed NADPH-dependent NBT (nitroblue tetrazolium) reductase activity, whereas TRX-gp91(phox) (304-423) and TRX-gp91(phox) (424-569) were inactive. Activity saturated at about a 1:1 molar ratio of FAD to TRX-gp91(phox) (306- 569), and showed the same Km for NADPH as that for superoxide generating activity by the intact enzyme. Activity was not inhibited by superoxide dismutase, indicating that it was not mediated by superoxide, but was blocked by an inhibitor of the respiratory burst oxidase, diphenylene iodonium (DPI). In the presence of Rac1, the cytosolic regulatory protein p67(phox) stimulated the NBT reductase activity, but p47(phox) had no effect. Truncated p67(phox) containing the activation domain (residues 199- 210) stimulated activity approximately 2-fold, whereas forms mutated or lacking this region failed to stimulate the activity. Our data indicate that: 1) TRX-gp91(phox) (306-569) contains the binding sites for both pyridine and flavin nucleotides; 2) this flavoprotein domain shows NBT reductase activity; and 3) the flavin-binding domain of gp91(phox) is the target of regulation by the activation domain of p67(phox).
Animals
;
Cloning, Molecular
;
DNA Primers
;
Escherichia coli/genetics/metabolism
;
Flavoproteins/chemistry/genetics
;
Kinetics
;
Membrane Glycoproteins/chemistry/*genetics/isolation & purification
;
*NADPH Oxidase
;
Neutrophils/physiology
;
Polymerase Chain Reaction/methods
;
Recombinant Fusion Proteins/chemistry/isolation & purification/metabolism
;
Recombinant Proteins/chemistry/isolation & purification
;
Restriction Mapping
;
Sequence Deletion