1.The role of caveolae in shear stress-induced endothelial nitric-oxide synthase activation.
Yinping LI ; Jingping OUYANG ; Hanqiao ZHENG ; Zhui YU ; Baohua WANG
Journal of Biomedical Engineering 2005;22(5):1020-1023
This article deals with the influence of shear stress on endothelial NO synthesis, and the role of caveolae in shear stress-induced eNOS activation. Human umbilical vascular endothelial cells (HUVEC) were cultured and exposed to different levels of laminal shear stress and Filipin, the perfused cultures were collected, and NO(2-)/NO(3-) was detected using nitrate reduction method. The structure of caveolae was observed through transmission electron microscopy (TEM). The level of NO(2-)-/NO(3-) was found to increase with the elevation of shear stress level (P < 0.01). It was the highest at 1.5 N/m2. After treatment with Filipin, the level of NO produced by HUVEC decreased significantly (P < 0.01), but after recovery and shear without Filipin, the level of NO synthesis bounded back (P < 0.01). It was then concluded that shear stress can induce endothelial NO synthesis and caveolae plays a key role in shear stress-induced eNOS activation.
Caveolae
;
physiology
;
Cells, Cultured
;
Endothelium, Vascular
;
cytology
;
Filipin
;
pharmacology
;
Humans
;
Nitric Oxide Synthase Type III
;
metabolism
;
Shear Strength
;
Umbilical Veins
;
cytology
2.Hypoxia Activates Toll-like Receptor 4 Signaling in Primary Mouse Hepatocytes Through the Receptor Clustering within Lipid Rafts.
Dong Hee KIM ; Timothy R BILLIAR
Journal of the Korean Surgical Society 2011;80(3):194-203
PURPOSE: Transient hypoxia is an initial event that accentuates ischemia/reperfusion (I/R) injury in the liver. Hepatic ischemia/reperfusion (I/R) injury is largely related to innate immunity via Toll-like receptor 4 (TLR4) signaling. However, the mechanism by which hypoxia could lead to activate TLR4 signaling remains unclear. Therefore, the aim of this experimental study investigates how TLR4 signalling is activated by hypoxia. METHODS: Hepatocytes were isolated from male wild-type (C57BL/6) mice (8~12 weeks old) by an in situ collagenase (Type IV, Sigma-Aldrich) perfusion technique. In this study, using primary mouse hepatocytes in culture to 1% oxygen, detection of TLR4 translocation to the lipid rafts on the cell membrane by immunofluorescence staining and immunoblotting was saught. RESULTS: Hypoxia caused TLR4/MD2 and beta2-Integrin (CD11b/CD18) translocation to lipid rafts associated with CD14 in hepatocytes. The cholesterol sequestering agent, Nystatin and Filipin prevented hypoxia-induced TLR4/MD2 translocation to lipid rafts. Consistent with a role for oxidative stress in this effect, in vitro H2O2 treatment of hepatocytes similarly caused TLR4/MD2 translocation to lipid rafts. In addition, translocation of hypoxia-induced TLR4 complex was inhibited by N-acetylcysteine (NAC) demonstrating that the activation of TLR4 signaling is dependent on ROS. Further, the cholesterol sequestering agent, nystatin, prevented hypoxia-induced high mobility group box 1 (HMGB1) release in hepatocytes. CONCLUSION: These results suggest that ROS dependent TLR4 signaling is achieved following receptor translocation to the lipid raft in hepatocytes. We hypothesized that this mechanism is required for the release of HMGB1, an early mediator of injury and inflammation in hepatic I/R injury.
Acetylcysteine
;
Animals
;
Anoxia*
;
Cell Membrane
;
Cholesterol
;
Cluster Analysis*
;
Collagenases
;
Filipin
;
Fluorescent Antibody Technique
;
Hepatocytes*
;
HMGB1 Protein
;
Humans
;
Immunity, Innate
;
Immunoblotting
;
Inflammation
;
Liver
;
Male
;
Mice*
;
Nystatin
;
Oxidative Stress
;
Oxygen
;
Perfusion
;
Sequestering Agents
;
Toll-Like Receptor 4*
3.Lipid Raft Integrity Is Required for Survival of Triple Negative Breast Cancer Cells.
Anil BADANA ; Madhuri CHINTALA ; Gayathri VARIKUTI ; Nagaseshu PUDI ; Seema KUMARI ; Vijaya Rachel KAPPALA ; Rama Rao MALLA
Journal of Breast Cancer 2016;19(4):372-384
PURPOSE: Lipid rafts are cholesterol enriched microdomains that colocalize signaling pathways involved in cell proliferation, metastasis, and angiogenesis. We examined the effect of methyl-β-cyclodextrin (MβCD)-mediated cholesterol extraction on the proliferation, adhesion, invasion, and angiogenesis of triple negative breast cancer (TNBC) cells. METHODS: We measured cholesterol and estimated cell toxicity. Detergent resistant membrane (DRM) and non-DRM fractions were separated using the OptiPrep gradient method. Cell cycles stages were analyzed by flow cytometry, apoptosis was assessed using the TdT-mediated dUTP nick end-labeling assay, and metastasis was determined using a Matrigel invasion assay. Neo-vessel pattern and levels of angiogenic modulators were determined using an in vitro angiogenesis assay and an angiogenesis array, respectively. RESULTS: The present study found that the cholesterol-depleting agent MβCD, efficiently depleted membrane cholesterol and caused concentration dependent (0.1–0.5 mM) cytotoxicity compared to nystatin and filipin III in TNBC cell lines, MDA-MB 231 and MDA-MB 468. A reduced proportion of caveolin-1 found in DRM fractions indicated a cholesterol extraction-induced disruption of lipid raft integrity. MβCD inhibited 52% of MDA-MB 231 cell adhesion on fibronectin and 56% of MDA-MB 468 cell adhesion on vitronectin, while invasiveness of these cells was decreased by 48% and 52% respectively, following MβCD treatment (48 hours). MβCD also caused cell cycle arrest at the G2M phase and apoptosis in MDA-MB 231 cells (25% and 58% cells, respectively) and in MDA-MB 468 cells (30% and 38% cells, respectively). We found that MβCD treated cells caused a 52% and 58% depletion of neovessel formation in both MDA-MB 231 and MDA-MB 468 cell lines, respectively. This study also demonstrated that MβCD treatment caused a respective 2.6- and 2.5-fold depletion of tyrosine protein kinase receptor (TEK) receptor tyrosine kinase levels in both TNBC cell lines. CONCLUSION: MβCD-induced cholesterol removal enhances alterations in lipid raft integrity, which reduces TNBC cell survival.
Apoptosis
;
Caveolin 1
;
Cell Adhesion
;
Cell Cycle
;
Cell Cycle Checkpoints
;
Cell Line
;
Cell Proliferation
;
Cell Survival
;
Cholesterol
;
Detergents
;
Fibronectins
;
Filipin
;
Flow Cytometry
;
In Vitro Techniques
;
Membrane Microdomains
;
Membranes
;
Methods
;
Neoplasm Metastasis
;
Nystatin
;
Protein-Tyrosine Kinases
;
Triple Negative Breast Neoplasms*
;
Vitronectin
4.Extracellular Ca(2+)-sensing receptor-induced extracellular Ca2+ influx is down-regulated by caveolin-1 in human umbilical vein endothelial cells.
Zhen-Huan WANG ; Qing-Hua HU ; Hua ZHONG ; Feng-Mei DENG ; Fang HE
Acta Physiologica Sinica 2011;63(1):39-47
Although the function of extracellular Ca(2+)-sensing receptor (CaR) is known, the regulatory mechanism of the CaR function remains to be clarified. The purpose of the present study was to investigate the effect of caveolin-1 (Cav-1) on CaR-induced extracellular Ca(2+) influx by using acute caveolae disruption with Filipin or siRNA targeted to the Cav-1 in human umbilical vein endothelial cells (HUVECs). Intracellular Ca(2+) concentration ([Ca(2+)](i)) was detected by Fura-2/AM loading. The results showed that different concentrations of extracellular Ca(2+) failed to increase [Ca(2+)](i), while the CaR agonist Spermine (2 mmol/L) resulted in an increase in [Ca(2+)](i) that was diminished in buffer without Ca(2+) (P<0.05). No matter in buffer with or without 2 mmol/L Ca(2+), the [Ca(2+)](i) increase induced by Spermine in HUVECs was abolished after inhibition of CaR by a negative allosteric modulator Calhex231 (1 μmol/L) (P<0.05), conversely, the effect of Spermine on the increase in [Ca(2+)](i) in HUVECs was further augmented after acute caveolae disruption with Filipin (1.5 μg/mL) or transfection with siRNA targeted to the Cav-1 (P<0.05). This indicated that Cav-1 produced an inhibition of CaR-induced extracellular Ca(2+) influx. As to the biological mechanism of Cav-1-induced inhibition, immunofluorescence technique showed that both CaR and Cav-1 were present in HUVECs, and confocal microscopy supported the co-localization of CaR and Cav-1 on the plasma membrane. Functionally, the Cav-1 protein expression was decreased in HUVECs transfected with siRNA targeted to the Cav-1 (P<0.05); simultaneously, the CaR membrane protein expression was decreased (P<0.05), whereas CaR total protein level was unaffected (P>0.05). In conclusion, the present study suggests that CaR and Cav-1 co-localize on the plasma membrane in HUVECs and CaR-induced Ca(2+) influx is down-regulated by binding with Cav-1, and the mechanism involves the effect of Cav-1 on CaR localization on the plasma membrane and attenuating the CaR response to the agonist.
Calcium
;
metabolism
;
Calcium Channels
;
metabolism
;
Caveolin 1
;
agonists
;
physiology
;
Cells, Cultured
;
Down-Regulation
;
Filipin
;
pharmacology
;
Human Umbilical Vein Endothelial Cells
;
cytology
;
metabolism
;
Humans
;
Receptors, Calcium-Sensing
;
physiology
;
Spermine
;
pharmacology
5.Inhibitory effect of caveolin-1 on endoplasmic reticulum stress-induced apoptosis in macrophages via p38 MAPK pathway.
Wen YUE ; Shu-Tong YAO ; Xiao ZHOU ; Yan-Hong SI ; Hui SANG ; Jia-Fu WANG ; Zhan-Ping SHANG
Acta Physiologica Sinica 2012;64(2):149-154
Endoplasmic reticulum (ER) stress occurs in macrophage-rich areas of advanced atherosclerotic lesions and contributes to macrophage apoptosis and subsequent plaque necrosis. The purpose of the present study was to investigate the effects of caveolin-1 (Cav-1) on ER stress-induced apoptosis in cultured macrophages and the underlying mechanisms. RAW264.7 cells were incubated with thapsigargin (TG) to establish ER stress model. And Cav-1 expression was detected by Western blot. After being pretreated with filipin(III), a caveolae inhibitor, RAW264.7 cells were assayed with flow cytometry and confocal laser scanning microscopy to detect cell apoptosis. Moreover, p38 mitogen-activated protein kinase (MAPK) phosphorylation and C/EBP homologous protein (CHOP) expression were detected with Western blot. The results showed that Cav-1 expression was markedly increased at early stage of TG treatment (P < 0.05) and then decreased with prolonged or high dose TG treatments. The increasing of Cav-1 expression induced by TG in RAW264.7 cells was abolished under inhibition of caveolae by filipin(III) (P < 0.05). The effect of TG on apoptosis of RAW264.7 cells was further augmented after pretreatment with filipin(III) (P < 0.05). Western blotting showed that MAPK phosphorylation induced by TG was inhibited by filipin(III) in RAW264.7 cells (P < 0.05), whereas CHOP remained unchanged (P > 0.05). These results suggest that Cav-1 may play a critical role in suppressing ER stress-induced macrophages apoptosis in vitro, and one of the mechanisms may be correlated with the activation of p38 MAPK prosurvival pathway.
Animals
;
Apoptosis
;
drug effects
;
Caveolin 1
;
genetics
;
metabolism
;
Cell Line
;
Endoplasmic Reticulum Stress
;
physiology
;
Filipin
;
pharmacology
;
MAP Kinase Signaling System
;
Macrophages
;
cytology
;
drug effects
;
Mice
;
Thapsigargin
;
pharmacology
;
Transcription Factor CHOP
;
metabolism
;
p38 Mitogen-Activated Protein Kinases
;
metabolism