2.Inhibition of glutaminolysis alleviates myocardial fibrosis induced by angiotensin II.
Pan-Pan WANG ; Hao-Miao BAI ; Si-Yu HE ; Zi-Qi XIA ; Mei-Jie LIU ; Jiong AN ; Jia-Heng ZHOU ; Chen-Han LI ; Wei ZHANG ; Xing ZHANG ; Xin-Pei WANG ; Jia LI
Acta Physiologica Sinica 2023;75(2):179-187
		                        		
		                        			
		                        			The present study was aimed to investigate the role and mechanism of glutaminolysis of cardiac fibroblasts (CFs) in hypertension-induced myocardial fibrosis. C57BL/6J mice were administered with a chronic infusion of angiotensin II (Ang II, 1.6 mg/kg per d) with a micro-osmotic pump to induce myocardial fibrosis. Masson staining was used to evaluate myocardial fibrosis. The mice were intraperitoneally injected with BPTES (12.5 mg/kg), a glutaminase 1 (GLS1)-specific inhibitor, to inhibit glutaminolysis simultaneously. Immunohistochemistry and Western blot were used to detect protein expression levels of GLS1, Collagen I and Collagen III in cardiac tissue. Neonatal Sprague-Dawley (SD) rat CFs were treated with 4 mmol/L glutamine (Gln) or BPTES (5 μmol/L) with or without Ang II (0.4 μmol/L) stimulation. The CFs were also treated with 2 mmol/L α-ketoglutarate (α-KG) under the stimulation of Ang II and BPTES. Wound healing test and CCK-8 were used to detect CFs migration and proliferation respectively. RT-qPCR and Western blot were used to detect mRNA and protein expression levels of GLS1, Collagen I and Collagen III. The results showed that blood pressure, heart weight and myocardial fibrosis were increased in Ang II-treated mice, and GLS1 expression in cardiac tissue was also significantly up-regulated. Gln significantly promoted the proliferation, migration, mRNA and protein expression of GLS1, Collagen I and Collagen III in the CFs with or without Ang II stimulation, whereas BPTES significantly decreased the above indices in the CFs. α-KG supplementation reversed the inhibitory effect of BPTES on the CFs under Ang II stimulation. Furthermore, in vivo intraperitoneal injection of BPTES alleviated cardiac fibrosis of Ang II-treated mice. In conclusion, glutaminolysis plays an important role in the process of cardiac fibrosis induced by Ang II. Targeted inhibition of glutaminolysis may be a new strategy for the treatment of myocardial fibrosis.
		                        		
		                        		
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Angiotensin II/pharmacology*
		                        			;
		                        		
		                        			Fibroblasts
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Fibrosis
		                        			;
		                        		
		                        			Collagen/pharmacology*
		                        			;
		                        		
		                        			Collagen Type I/metabolism*
		                        			;
		                        		
		                        			RNA, Messenger/metabolism*
		                        			;
		                        		
		                        			Myocardium/pathology*
		                        			
		                        		
		                        	
3.1, 25-(OH)2-VitD3 attenuates renal tubulointerstitial fibrosis in diabetic kidney disease by inhibiting Snail1-SMAD3/SMAD4 complex formation.
Chengchong HUANG ; Rong DONG ; Zhengsheng LI ; Jing YUAN
Chinese Journal of Cellular and Molecular Immunology 2023;39(4):325-331
		                        		
		                        			
		                        			Objective To investigate the effect of 1, 25-(OH)2-VitD3 (VitD3) on renal tubuleinterstitial fibrosis in diabetic kidney disease. Methods NRK-52E renal tubular epithelial cells were divided into control group (5.5 mmol/L glucose medium treatment), high glucose group (25 mmol/L glucose medium treatment) and high glucose with added VitD3 group (25 mmol/L glucose medium combined with 10-8 mmol/L VitD3). The mRNA and protein expression of Snail1, SMAD3, SMAD4, α-SMA and E-cadherin in NRK-52E cells were detected by real-time quantitative PCR and Western blot analysis respectively. The expression and localization of Snail1, SMAD3 and SMAD4 were detected by immunofluorescence cytochemical staining. The binding of Snail1 with SMAD3/SMAD4 complex to the promoter of Coxsackie-adenovirus receptor (CAR) was detected by chromatin immunoprecipitation. The interaction among Snail1, SMAD3/SMAD4 and E-cadherin were detected by luciferase assay. Small interfering RNA (siRNA) was used to inhibit the expression of Snail1 and SMAD4, and the expression of mRNA of E-cadherin was detected by real-time quantitative PCR. SD rats were randomly divided into control group, DKD group and VitD3-treated group. DKD model was established by injection of streptozotocin (STZ) in DKD group and VitD3-treated group. After DKD modeling, VitD3-treated group was given VitD3 (60 ng/kg) intragastric administration. Control group and DKD group were given normal saline intragastric administration. In the DKD group and VitD3-treated group, insulin (1-2 U/kg) was injected subcutaneously to control blood glucose for 8 weeks. The mRNA and protein levels of Snail1, SMAD3, SMAD4, α-SMA and E-cadherin in renal tissues were detected by real-time quantitative PCR and Western blot analysis respectively. Immunohistochemistry was used to detect the expression and localization of Snail1, SMAD3, SMAD4, α-SMA and E-cadherin in renal tissue. Results Compared with the control group, the mRNA and protein expressions of Snail1, SMAD3, SMAD4 and α-SMA in NRK-52E cells cultured with high glucose and in DKD renal tissues were up-regulated, while E-cadherin expression was down-regulated. After the intervention of VitD3, the expression levels of Snail1, SMAD3, SMAD4, α-SMA and E-cadherin in the DKD model improved to be close to those in the control group. Chromatin immunoprecipitation showed that Snail1 and SMAD3/SMAD4 bound to CAR promoter IV, while VitD3 prevented Snail1 and SMAD3/SMAD4 from binding to CAR promoter IV. Luciferase assay confirmed the interaction among Snail1, SMAD3/SMAD4 and E-cadherin. After the mRNA of Snail1 and SMAD4 was inhibited by siRNA, the expression of E-cadherin induced by high glucose was up-regulated. Conclusion VitD3 could inhibit the formation of Snail1-SMAD3/SMAD4 complex and alleviate the renal tubulointerstitial fibrosis in DKD.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Cadherins/genetics*
		                        			;
		                        		
		                        			Diabetes Mellitus/pathology*
		                        			;
		                        		
		                        			Diabetic Nephropathies/pathology*
		                        			;
		                        		
		                        			Epithelial-Mesenchymal Transition
		                        			;
		                        		
		                        			Fibrosis/pathology*
		                        			;
		                        		
		                        			Glucose/pharmacology*
		                        			;
		                        		
		                        			Kidney/pathology*
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			RNA, Messenger
		                        			;
		                        		
		                        			RNA, Small Interfering
		                        			;
		                        		
		                        			Transforming Growth Factor beta1/metabolism*
		                        			;
		                        		
		                        			Vitamin D/pharmacology*
		                        			
		                        		
		                        	
4.Shexiang Tongxin Dropping Pill Allieviates Heart Failure via Extracellula Matrix-Receptor Interaction Pathways Based on RNA-Seq Transcriptomics and Experimental Studies.
Ya-Fang TAN ; Yu-Han FU ; Min-Zhou ZHANG
Chinese journal of integrative medicine 2023;29(7):600-607
		                        		
		                        			OBJECTIVE:
		                        			To investigate the protective mechanisms of Chinese medicine Shexiang Tongxin Dropping Pills (STDP) on heart failure (HF).
		                        		
		                        			METHODS:
		                        			Isoproterenol (ISO)-induced HF rat model and angiotensin II (Ang II)-induced neonatal rat cardiac fibroblast (CFs) model were used in the present study. HF rats were treated with and without STDP (3 g/kg). RNA-seq was performed to identify differentially expressed genes (DEGs). Cardiac function was evaluated by echocardiography. Hematoxylin and eosin and Masson's stainings were taken to assess cardiac fibrosis. The levels of collagen I (Col I) and collagen III (Col III) were detected by immunohistochemical staining. CCK8 kit and transwell assay were implemented to test the CFs' proliferative and migratory activity, respectively. The protein expressions of α-smooth muscle actin (α-SMA), matrix metalloproteinase-2 (MMP-2), MMP-9, Col I, and Col III were detected by Western blotting.
		                        		
		                        			RESULTS:
		                        			The results of RNA-seq analysis showed that STDP exerted its pharmacological effects on HF via multiple signaling pathways, such as the extracellular matrix (ECM)-receptor interaction, cell cycle, and B cell receptor interaction. Results from in vivo experiments demonstrated that STDP treatment reversed declines in cardiac function, inhibiting myocardial fibrosis, and reversing increases in Col I and Col III expression levels in the hearts of HF rats. Moreover, STDP (6, 9 mg/mL) inhibited the proliferation and migration of CFs exposed to Ang II in vitro (P<0.05). The activation of collagen synthesis and myofibroblast generation were markedly suppressed by STDP, also the synthesis of MMP-2 and MMP-9, as well as ECM components Col I, Col III, and α-SMA were decreased in Ang II-induced neonatal rats' CFs.
		                        		
		                        			CONCLUSIONS
		                        			STDP had anti-fibrotic effects in HF, which might be caused by the modulation of ECM-receptor interaction pathways. Through the management of cardiac fibrosis, STDP may be a compelling candidate for improving prognosis of HF.
		                        		
		                        		
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Matrix Metalloproteinase 2/metabolism*
		                        			;
		                        		
		                        			Matrix Metalloproteinase 9/metabolism*
		                        			;
		                        		
		                        			RNA-Seq
		                        			;
		                        		
		                        			Transcriptome/genetics*
		                        			;
		                        		
		                        			Heart Failure/drug therapy*
		                        			;
		                        		
		                        			Collagen
		                        			;
		                        		
		                        			Collagen Type I/metabolism*
		                        			;
		                        		
		                        			Fibrosis
		                        			;
		                        		
		                        			Myocardium/pathology*
		                        			
		                        		
		                        	
6.Protective effect of intervention with cannabinoid type-2 receptor agonist JWH133 on pulmonary fibrosis in mice.
Xiao WU ; Wen Ting YANG ; Yi Ju CHENG ; Lin PAN ; Yu Quan ZHANG ; Hong Lan ZHU ; Meng Lin ZHANG
Chinese Journal of Internal Medicine 2023;62(7):841-849
		                        		
		                        			
		                        			Objective: JWH133, a cannabinoid type 2 receptor agonist, was tested for its ability to protect mice from bleomycin-induced pulmonary fibrosis. Methods: By using a random number generator, 24 C57BL/6J male mice were randomly divided into the control group, model group, JWH133 intervention group, and JWH133+a cannabinoid type-2 receptor antagonist (AM630) inhibitor group, with 6 mice in each group. A mouse pulmonary fibrosis model was established by tracheal instillation of bleomycin (5 mg/kg). Starting from the first day after modeling, the control group mice were intraperitoneally injected with 0.1 ml of 0.9% sodium chloride solution, and the model group mice were intraperitoneally injected with 0.1 ml of 0.9% sodium chloride solution. The JWH133 intervention group mice were intraperitoneally injected with 0.1 ml of JWH133 (2.5 mg/kg, dissolved in physiological saline), and the JWH133+AM630 antagonistic group mice were intraperitoneally injected with 0.1 ml of JWH133 (2.5 mg/kg) and AM630 (2.5 mg/kg). After 28 days, all mice were killed; the lung tissue was obtained, pathological changes were observed, and alveolar inflammation scores and Ashcroft scores were calculated. The content of type Ⅰ collagen in the lung tissue of the four groups of mice was measured using immunohistochemistry. The levels of interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) in the serum of the four groups of mice were measured using enzyme-linked immunosorbent assay (ELISA), and the content of hydroxyproline (HYP) in the lung tissue of the four groups of mice was measured. Western blotting was used to measure the protein expression levels of type Ⅲ collagen, α-smooth muscle actin (α-SMA), extracellular signal regulated kinase (ERK1/2), phosphorylated P-ERK1/2 (P-ERK1/2), and phosphorylated ribosome S6 kinase type 1 (P-p90RSK) in the lung tissue of mice in the four groups. Real-time quantitative polymerase chain reaction was used to measure the expression levels of collagen Ⅰ, collagen Ⅲ, and α-SMA mRNA in the lung tissue of the four groups of mice. Results: Compared with the control group, the pathological changes in the lung tissue of the model group mice worsened, with an increase in alveolar inflammation score (3.833±0.408 vs. 0.833±0.408, P<0.05), an increase in Ashcroft score (7.333±0.516 vs. 2.000±0.633, P<0.05), an increase in type Ⅰ collagen absorbance value (0.065±0.008 vs. 0.018±0.006, P<0.05), an increase in inflammatory cell infiltration, and an increase in hydroxyproline levels [(1.551±0.051) μg/mg vs. (0.974±0.060) μg/mg, P<0.05]. Compared with the model group, the JWH133 intervention group showed reduced pathological changes in lung tissue, decreased alveolar inflammation score (1.833±0.408, P<0.05), decreased Ashcroft score (4.167±0.753, P<0.05), decreased type Ⅰ collagen absorbance value (0.032±0.004, P<0.05), reduced inflammatory cell infiltration, and decreased hydroxyproline levels [(1.148±0.055) μg/mg, P<0.05]. Compared with the JWH133 intervention group, the JWH133+AM630 antagonistic group showed more severe pathological changes in the lung tissue of mice, increased alveolar inflammation score and Ashcroft score, increased type Ⅰ collagen absorbance value, increased inflammatory cell infiltration, and increased hydroxyproline levels. Compared with the control group, the expression of α-SMA, type Ⅲ collagen, P-ERK1/2, and P-p90RSK proteins in the lung tissue of the model group mice increased, while the expression of type Ⅰ collagen, type Ⅲ collagen, and α-SMA mRNA increased. Compared with the model group, the protein expression of α-SMA (relative expression 0.60±0.17 vs. 1.34±0.19, P<0.05), type Ⅲ collagen (relative expression 0.52±0.09 vs. 1.35±0.14, P<0.05), P-ERK1/2 (relative expression 0.32±0.11 vs. 1.14±0.14, P<0.05), and P-p90RSK (relative expression 0.43±0.14 vs. 1.15±0.07, P<0.05) decreased in the JWH133 intervention group. The type Ⅰ collagen mRNA (2.190±0.362 vs. 5.078±0.792, P<0.05), type Ⅲ collagen mRNA (1.750±0.290 vs. 4.935±0.456, P<0.05), and α-SMA mRNA (1.588±0.060 vs. 5.192±0.506, P<0.05) decreased. Compared with the JWH133 intervention group, the JWH133+AM630 antagonistic group increased the expression of α-SMA, type Ⅲ collagen, P-ERK1/2, and P-p90RSK protein in the lung tissue of mice, and increased the expression of type Ⅲ collagen and α-SMA mRNA. Conclusion: In mice with bleomycin-induced pulmonary fibrosis, the cannabinoid type-2 receptor agonist JWH133 inhibited inflammation and improved extracellular matrix deposition, which alleviated lung fibrosis. The underlying mechanism of action may be related to the activation of the ERK1/2-RSK1 signaling pathway.
		                        		
		                        		
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Pulmonary Fibrosis/pathology*
		                        			;
		                        		
		                        			Cannabinoid Receptor Agonists/metabolism*
		                        			;
		                        		
		                        			Collagen Type I/pharmacology*
		                        			;
		                        		
		                        			Collagen Type III/pharmacology*
		                        			;
		                        		
		                        			Hydroxyproline/pharmacology*
		                        			;
		                        		
		                        			Sodium Chloride/metabolism*
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Lung/pathology*
		                        			;
		                        		
		                        			Cannabinoids/adverse effects*
		                        			;
		                        		
		                        			Bleomycin/metabolism*
		                        			;
		                        		
		                        			Collagen/metabolism*
		                        			;
		                        		
		                        			Inflammation/pathology*
		                        			;
		                        		
		                        			RNA, Messenger/metabolism*
		                        			
		                        		
		                        	
7.A case of stage Ⅲ pneumoconiosis with large shadow by burr-like changes misdiagnosed as lung cancer.
Xiao Xia XI ; Xiao Lei YUE ; Xiao WANG ; Hao ZHANG ; Yong Lin CHEN
Chinese Journal of Industrial Hygiene and Occupational Diseases 2023;41(4):314-316
		                        		
		                        			
		                        			Pneumoconiosis is characterized by chronic lung inflammation and fibrosis, and inflammation can promote pulmonary fibrosis, which in turn leads to pneumoconiosis. When a large shadow with a long diameter of not less than 2 cm and a short diameter of not less than 1 cm appears in the lung, it can be classified as stage Ⅲ pneumoconiosis. This paper reports a case of stage Ⅲ pneumoconiosis with a large shadow in the upper right lung accompanied by burr-like changes misdiagnosed as lung cancer by CT examination.When the large shadow lesions in patients with pneumoconiosis and lung cancer are difficult to distinguish on CT, an additional MRI examination, particularly T(2)W imaging sequence is useful sequence for identifying the two.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Pneumoconiosis/pathology*
		                        			;
		                        		
		                        			Lung/pathology*
		                        			;
		                        		
		                        			Lung Neoplasms/pathology*
		                        			;
		                        		
		                        			Pulmonary Fibrosis/pathology*
		                        			;
		                        		
		                        			Diagnostic Errors
		                        			
		                        		
		                        	
8.Research progress on the histological scoring system for nonalcoholic fatty liver disease.
Jiao LI ; Qiao Yun GE ; Qi Yuan SONG ; Zhi Hong ZHANG
Chinese Journal of Hepatology 2023;31(7):765-769
		                        		
		                        			
		                        			Non-alcoholic fatty liver disease (NAFLD) has replaced chronic hepatitis B as the most common chronic liver disease in China and has now been renamed metabolic dysfunction-associated fatty liver disease (MAFLD). The Brunt, the American NASH Clinical Research Network (NASH-CRN), the European Steatosis, Activity, and Fibrosis/Fatty Liver Inhibition of Progression (SAF/FLIP), and the Pediatric NAFLD are currently the four semi-quantitative grading systems for histological evaluation. This paper reviews these four scoring systems for the clinical selection of appropriate systems for diagnosis and prognosis assessment. This article is a review, and in order to coordinate the evaluation criteria of various scoring systems, the old name "NAFLD" is used.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Child
		                        			;
		                        		
		                        			Non-alcoholic Fatty Liver Disease/pathology*
		                        			;
		                        		
		                        			Liver/pathology*
		                        			;
		                        		
		                        			Severity of Illness Index
		                        			;
		                        		
		                        			Biopsy
		                        			;
		                        		
		                        			Fibrosis
		                        			
		                        		
		                        	
9.Survivin ( BIRC5 ) regulates bladder fibrosis in a rat model of partial bladder outlet obstruction.
Xingpeng DI ; Xi JIN ; Liyuan XIANG ; Xiaoshuai GAO ; Liao PENG ; Wei WANG ; Kaiwen XIAO ; Yu LIU ; Guo CHEN ; Chi YUAN ; Deyi LUO ; Hong LI ; Kunjie WANG
Chinese Medical Journal 2023;136(1):117-119
10.Research progress of thyroid hormone in pulmonary fibrosis.
Bao Yan LIU ; Yong WANG ; Yan LIU ; Juan LI ; Ping CUI ; Jin HE
Chinese Journal of Industrial Hygiene and Occupational Diseases 2023;41(1):62-66
		                        		
		                        			
		                        			Pulmonary fibrosis is end-stage of variety of heterogeneous interstitial lung disease, characterizedby excessive proliferation of fibroblasts and extracellular matrix deposition and destruction of lung parenchyma. Thyroid and lung are derived from the same endodermal cells, thyroid hormone affect the occurrence、development and prognosis of the chronic obstructive pulmonary disease, lung cancer and other lung diseases, This article reviews the role and mechanism of thyroid hormone in pulmonary fibrosis in order to provide new idea for the study of the role and mechanism of thyroid hormone in silicosis.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Pulmonary Fibrosis/pathology*
		                        			;
		                        		
		                        			Lung/pathology*
		                        			;
		                        		
		                        			Silicosis
		                        			;
		                        		
		                        			Lung Diseases, Interstitial
		                        			;
		                        		
		                        			Fibroblasts
		                        			;
		                        		
		                        			Thyroid Hormones
		                        			;
		                        		
		                        			Fibrosis
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail