1.Effect of oleic acid on the proliferation and secretion of pro-inflammatory mediators of human normal fibroblasts and scar fibroblasts.
Qiong JIANG ; Bo-yu WU ; Xiao-dong CHEN
Chinese Journal of Burns 2012;28(6):444-450
OBJECTIVETo investigate the effect of oleic acid on the proliferation and secretion of pro-inflammatory mediators of human normal fibroblasts and scar fibroblasts.
METHODSHuman normal fibroblasts and scar fibroblasts were cultured in vitro and respectively divided into seven groups according to the random number table, with 8 samples in each group. Cells in blank control (BC) group were routinely cultured without addition of other agents. Cells in ethanol-control (EC) group were cultured with medium with the addition of 2% absolute ethanol. Cells in oleic acid groups were cultured with the addition of oleic acid in concentration of 0.25, 0.50, 1.00, 2.00, or 4.00 mmol/L in 2% absolute ethanol. The growth of cells in each group was observed with trypan blue staining on post culture day (PCD) 1-5. On PCD 2, structure of cells in BC, EC, and 1.00 mmol/L oleic acid groups was observed under inverted phase contrast microscope and transmission electron microscope; cell cycle of BC, EC, and 1.00 mmol/L oleic acid groups was measured by flow cytometer; cell proliferation activity in each group was measured by MTT assay; the level of NO in supernatant was assayed by Griess assay; the levels of TNF-α, IL-1β, IL-6, and IL-8 in supernatants in each group were determined by enzyme-linked immunosorbent assay. Data were processed with multifactor and repeated measurement design analysis of variance.
RESULTS(1) There was no significant difference in each index of normal fibroblasts and scar fibroblasts between BC group and EC group. (2) The numbers of normal fibroblasts and scar fibroblasts in 2.00 and 4.00 mmol/L oleic acid groups were significantly lower than those in corresponding BC and EC groups on PCD 2-5 (with F values respectively 13.773 and 11.344, P values all below 0.01). (3) On PCD 2, the numbers of normal fibroblasts and scar fibroblasts in 1.00 mmol/L oleic acid groups decreased, and the cells were aggregating, rounding, and easy to drop off. Cellular membrane disruption, vacuolar degeneration of mitochondrion, pyknosis, and lipid droplets were observed. (4) The percentages of G0/G1 and G2/M phases of normal fibroblasts in 1.00 mmol/L oleic acid group [(93.56 ± 9.98)%, (2.01 ± 0.75)%] were significantly higher than those in BC group [(84.23 ± 10.96)%, (0.37 ± 0.16)%, with F values respectively 3.026, 34.751, P < 0.05 or P < 0.01], while the percentage of normal fibroblasts in S phase [(4.42 ± 0.87)%] was markedly lower than that in BC group [(16.06 ± 1.74)%, F = 136.120, P < 0.01]. The percentages of scar fibroblasts of G0/G1 and G2/M phases in 1.00 mmol/L oleic acid group [(93.86 ± 13.90)%, (1.89 ± 0.66)%] were significantly higher than those in BC group [(83.88 ± 10.42)%, (0.41 ± 0.17)%, with F values respectively 3.529, 32.710, P < 0.05 or P < 0.01], and the percentage of scar fibroblasts in S phase [(3.87 ± 0.63)%] was markedly lower than that in BC group [(15.89 ± 2.02)%, F = 116.508, P < 0.01]. (5) The proliferation rates of normal fibroblasts and scar fibroblasts in 0.50-4.00 mmol/L oleic acid groups were significantly lower than those in corresponding BC and EC groups (with F values respectively 215.945 and 194.555, P < 0.05 or P < 0.01). (6) The content of NO in supernatant of normal fibroblasts in all oleic acid groups was obviously higher than that in BC and EC groups (F = 30.240, P < 0.05 or P < 0.01). The contents of NO in supernatants of scar fibroblasts in 1.00-4.00 mmol/L oleic acid groups were significantly higher than that in BC and EC groups (F = 12.495, P < 0.01). The contents of TNF-α and IL-6 in supernatants of normal fibroblasts and scar fibroblasts in 2.00 and 4.00 mmol/L oleic acid groups were obviously higher than those in corresponding BC and EC groups (with F(TNF-α) values respectively 6.911, 3.818, F(IL-6) values respectively 16.939, 11.600,P < 0.05 or P < 0.01). The contents of IL-1β in supernatants of normal fibroblasts and scar fibroblasts in groups of every concentration of oleic acid were significantly higher than those in corresponding BC and EC groups (with F values respectively 25.117, 9.137, P values all below 0.01). The contents of IL-8 in supernatants of normal fibroblasts in 1.00-4.00 mmol/L oleic acid groups were markedly higher than those in BC and EC groups (F = 2.717, P < 0.05 or P < 0.01). The contents of IL-8 in supernatants of scar fibroblasts in 2.00 and 4.00 mmol/L oleic acid groups were significantly higher than those in BC and EC groups (F = 3.338, P < 0.05). There was no statistically significant difference in above indexes between normal fibroblasts and scar fibroblasts in the same concentration of oleic acid group (with F values from 0.120 to 3.766, P values all above 0.05).
CONCLUSIONSAlthough oleic acid in high concentration inhibits the proliferation of scar fibroblasts, it also inhibits the proliferation of normal fibroblasts. Oleic acid in high concentration can cause excessive and continued inflammatory reaction by promoting the secretion of pro-inflammatory mediators of normal fibroblasts and scar fibroblasts, and they are detrimental to wound healing.
Cell Proliferation ; drug effects ; Cells, Cultured ; Cicatrix ; metabolism ; Fibroblasts ; cytology ; drug effects ; secretion ; Humans ; Inflammation Mediators ; metabolism ; Oleic Acid ; pharmacology
2.Effect of epidermal growth factor and testosterone on androgen receptor activation in urethral plate fibroblasts in hypospadias.
Junshan LIN ; Cheng XIE ; Ruiqing CHEN ; Dumiao LI
Journal of Central South University(Medical Sciences) 2016;41(5):507-512
OBJECTIVE:
To investigate androgen receptor (AR) expression and the effect of epidermal growth factor (EGF) and testosterone on AR expression level.
METHODS:
EGF or different concentrations of testosterone were incubated with the primary urethral plate fibroblasts from patients with hypospadias. The levels of AR expression in the fibroblasts were detected by immunocytochemical assays and graphical analysis.
RESULTS:
There was no significant difference in AR activation under physiological concentrations (3×10(-8) mol/L) of testosterone between the control and the distal hypospadias group (P>0.05). However, there was a significant decrease in AR activation in the proximal hypospadias group compared to that in the control group (P<0.001). Under the concentration of 3×10(-6) mol/L, the effects of testosterone on AR activation were dramatically different in the three groups (control group>distal hypospadias group>proximal hypospadias group, P<0.001). AR activation level in the group of proximal hypospadias was improved most obviously when EGF and physiological concentration of testosterone were employed in the urethral plate fibroblasts from hypospadias patients (P<0.001), and it was improved more in the distal hypospadias group than that in the control group (P=0.02).
CONCLUSION
AR expression and activation in the urethral plate fibroblasts from hypospadias patients are abnormal. EGF can be used to improve AR activation in fibroblasts from different types of hypospadias, especially in the proximal type.
Cells, Cultured
;
EGF Family of Proteins
;
metabolism
;
Fibroblasts
;
drug effects
;
metabolism
;
Humans
;
Hypospadias
;
metabolism
;
Male
;
Receptors, Androgen
;
metabolism
;
Testosterone
;
pharmacology
3.An experimental study on the role of protein kinase C in the down-regulation of fibroblast proliferation in normal skin and hyperplastic scar by adrenaline.
Cheng-de ZHANG ; Cai-ping ZHANG ; Lan SONG ; Shi-yin LONG ; Ying TIAN
Chinese Journal of Burns 2005;21(6):448-451
OBJECTIVETo investigate the role of protein kinase C (PKC) in the down-regulation of fibroblast proliferation in normal skin (NFb) and hyperplastic scar (SFb) by adrenaline.
METHODSHuman NFb and SFb cells were cultured in vitro. Phentolamine (in final concentrations of 0 and 3 x 10(-6) micromol/L) was added to the culture medium. One hour later, adrenaline in different final concentrations (0.00, 0.05, 0.10, 0.20 micromol/L) was added to the culture medium and incubated for 24 hours. The cellular proliferation activity and cell viability rate were determined with MTT. The cell culture supernatant was harvested for the determination of LDH activity to assess the toxicity of phentolamine and adrenaline. The phosph-PKC activity was determined with Western-blotting and was semiquantitatively analyzed.
RESULTS(1) After stimulation with adrenaline alone, or combined 0.20 micromol/L adrenaline with 3 x 10(-6) micromol/L phentolamine, the cell viability of both NFb and SFb decreased significantly (P < 0.05 or 0.01). (2) There was no difference in the LDH activity between the cells either stimulated by adrenaline in all concentrations or by combination of adrenaline and phentolamine (P > 0.05). (3) The phosphorylation of PKC in NFb and SFb cells stimulated by 0.05, 0.10, 0.20 micromol/L adrenaline was obviously higher than that before stimulation (P < 0.01). When phentolamine in the concentration of 3 x 10(-6) micromol/L was used alone for stimulation, the phosphorylation of PKC in NFb cells (123 +/- 5) was also evidently higher than that before stimulation (80 +/- 5, P < 0.01). But there was no such effect on SFb cells (P > 0.05). When adrenaline in the concentration of 0.05, 0.10 or 0.20 micromol/L was separately added together with phentolamine in the dose of 3 x 10(6) micromol/L for the stimulation, the phosphorylation of PKC in NFb and SFb cells was evidently lower than that when 3 different concentrations of adrenaline was used alone for stimulation (P < 0.01).
CONCLUSIONAdrenaline can inhibit the proliferation of NFb and SFb by activating PKC through binding alpha adrenaline receptor.
Cell Proliferation ; drug effects ; Cells, Cultured ; Cicatrix, Hypertrophic ; metabolism ; Down-Regulation ; Epinephrine ; adverse effects ; Fibroblasts ; cytology ; Humans ; Phentolamine ; adverse effects ; Phosphorylation ; Protein Kinase C ; metabolism ; Skin ; drug effects
4.Effects of Angelica dahurica extract on biological behavior of dermal fibroblasts.
Xiao-zhi BAI ; Da-hai HU ; Yun-chuan WANG ; Jia-qi LIU ; Ji-hong SHI ; Chao-wu TANG
Chinese Journal of Surgery 2012;50(4):357-360
OBJECTIVETo observe the effects of Angelica dahurica extracts on the biological characteristics of human dermal fibroblasts in vitro and to preliminary explore its possible therapeutic mechanism for wound healing.
METHODSThe optimal concentration of Angelica dahurica extracts was identified by analysing of proliferation activity of human normal fibroblasts (Fb) that treated with different concentration of Angelica dahurica extracts through thiazole blue (MTT) colorimetric assay. Cell cycle, collagen I and collagen III mRNA levels of the optimal Angelica dahurica extracts treated Fb were detected by flow cytometry (FCM) and real-time PCR techniques.
RESULTSAt concentrations of 5 × 10(-4) to 5 × 10(-2) g/L, the Angelica dahurica extracts significantly enhanced the proliferation of Fb. The most significant concentration was 5 × 10(-3) g/L (t = 5.79, P < 0.01), at which an increased percentage of G1 to S and S to G2 phase cells (t = 11.2, 5.69, 2.44, P < 0.05) as well as an increased level of collagen I (1.61 ± 0.26 vs. 1.00 ± 0.16) and collagen III mRNA (3.36 ± 0.40 vs. 1.00 ± 0.14) were obtained compared to the control group (t = 6.69, 7.64, P < 0.01).
CONCLUSIONSAngelica dahurica extracts can notably promote the proliferation of Fb and accelerating the cell cycle of Fb as well as up-regulating the expression of collagen I and collagen III, which may enhance the process of wound healing.
Angelica ; chemistry ; Cell Cycle ; drug effects ; Cell Proliferation ; drug effects ; Cells, Cultured ; Collagen ; metabolism ; Dermis ; cytology ; Fibroblasts ; cytology ; drug effects ; metabolism ; Humans ; Plant Extracts ; pharmacology
5.Inhibitory effect of new antimicrobial substance by Bacillus subtilis fmbJ on Newcastle disease virus and infectious Bursal disease virus in vitro.
Xian-Qing HUANG ; Zhao-Xin LU ; Bao-An CUI ; Xiao-Mei BIE ; Feng-Xia LÜ
Chinese Journal of Biotechnology 2006;22(2):328-333
The resistance effect on Newcastle disease virus (NDV) and Infectious Bursal Disease Virus(IBDV) in vitro of a new antimicrobial substance (AS), which produced by a Bacillus subtilis strain named B. subtilis fmbJ. Results showed that the TD50 and TD0 value of this AS on Chicken Embryo Fibroblasts cell (CEF) were 128.95mg/L and 25.79mg/L, respectively. This AS could strongly inhibit the cytopathic effects of cell induced by NDV as well as IBDV, and increase the survival rate of cell remarkably. This AS could inhibit the function of NDV and IBDV, and it could defend against the infection and inhibit multiplication of NDV and IBDV, and the effect was the same as the antiviral medicine Ribavirin. It had lower toxicity to CEF cell, therefore we would study it further that it was as antiviral medicine.
Animals
;
Antiviral Agents
;
metabolism
;
toxicity
;
Bacillus subtilis
;
metabolism
;
Chick Embryo
;
cytology
;
Fibroblasts
;
cytology
;
drug effects
;
Infectious bursal disease virus
;
drug effects
;
Newcastle disease virus
;
drug effects
7.Effects of pravastatin on the expression of endothelin induced by aldosterone in rat cardiac fibroblasts.
Yu-Zhou WU ; Wei CUI ; Shu-Qin LI ; Lei ZHANG ; Jing-Chao LU
Chinese Journal of Applied Physiology 2007;23(3):343-346
AIMTo investigate the effects of pravastatin on endothelin(ET) expression induced by aldosterone in cultured neonatal rat cardiac fibroblasts.
METHODSET concentration in conditioned medium was measured by radioimmunoassay, intracellular ET-1 level was evaluated by flow cytometry, and the expression of preproendothelin-1 (ppET-1) was detected and quantified using reverse transcriptase-polymerase chain reaction (RT-PCR) method.
RESULTSThe cardiac fibroblasts, treated with aldosterone at 107 mol/L, significantly up-regulated ppET-1 mRNA expression, as well as ET-1 synthesis and release. Pravastatin (10(-5), 10(-4), 10(-3) mol/L) dose-dependently blocked these effects. In contrast, pravastatin-induced inhibitory effects were reversed in the presence of mevalonate.
CONCLUSIONPravastatin down-regulated ppET-1 mRNA expression, as well as ET-1 synthesis and release induced by aldosterone in a process specifically related to mevalonate in cardiac fibroblasts.
Aldosterone ; metabolism ; Animals ; Cells, Cultured ; Endothelins ; metabolism ; Fibroblasts ; drug effects ; metabolism ; Myoblasts, Cardiac ; drug effects ; metabolism ; Pravastatin ; pharmacology ; Rats ; Rats, Sprague-Dawley
8.The effects of complement C3f segment on expression and secretion of collagen I, III and transforming growth factor-beta1 in human embryonic lung fibroblast.
Wei LIU ; Qing-Bo MA ; Juan-Juan CHEN ; Hai-Xia KONG ; Mao-Ti WEI ; Shi-Xin WANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2012;30(1):61-63
OBJECTIVETo observe the effects of complement fragment C3f on expression and secretion of collagen I, III and transforming growth factor( TGF)-beta1 in human embryonic lung fibroblast (MRC-5) cells.
METHODSMRC-5 cells were cultured with C3f (the synthetic 17 peptides fragments of complement C3). The extracellular and intracellular expression levels of type I, III collagens and TGF-beta1 in MRC-5 cultures were detected by ELISA and immunohistochemistry, respectively.
RESULTSThe expression levels of type I, III collagen and TGF-beta1 in the supernatant of MRC-5 cultures decreased significantly with the concentrations of C3f as compared with controls (P < 0.05). Also the expression level of TGF-beta1 in MRC-5 cytoplasm reduced significantly as compared with controls (P < 0.05).
CONCLUSIONThe results of present in vitro study showed that the complement fragment C3f could reduce the formation of TGF-beta1 and type I, III collagens in MRC-5 cells, and inhibit the lung tissue fibrosis.
Cell Line ; Collagen Type I ; metabolism ; Collagen Type III ; metabolism ; Complement C3b ; pharmacology ; Fibroblasts ; drug effects ; metabolism ; Humans ; Lung ; cytology ; drug effects ; embryology ; Transforming Growth Factor beta1 ; metabolism
9.Effect of SiO(2) on expression of platelet derived growth factor in human silicotic alveolar macrophages and human embryonic lung fibroblasts.
Xian-hua WANG ; Xiao-hui HAO ; Jing ZHAO ; Xiao-bing MA ; Lan ZHU ; Ying SUN
Chinese Journal of Industrial Hygiene and Occupational Diseases 2009;27(4):218-221
OBJECTIVETo study the effect of SiO(2) on the expression of platelet derived growth factor (PDGF) in human silicotic alveolar macrophages (AM) and human embryonic lung fibroblasts (HELF).
METHODSHuman alveolar macrophages were collected from a silicotic patient by bronchoalveolar lavage and exposed to SiO(2) for 3, 6, 12, 18, 24 and 36 h. The cultured supernatant at 24 h was incubated with human embryonic lung fibroblasts for 6, 12, 18, 24, 36 and 48 h. The immunocytochemistry and Western blot were used to detect the level of expression of PDGF in lung fibroblasts and their supernatant respectively. (3)H-proline was used to detect the synthesis and secretion of collagen in HELF.
RESULTSThe expression of the PDGF in the supernatant of alveolar macrophages exposed to SiO(2) increased significantly and reached the peak at 24 h (average optical density: 0.282 +/- 0.019 vs 0.214 +/- 0.014, P < 0.01) with ELISA. The expression of PDGF in lung fibroblasts and their supernatant increased at different time (6, 12, 18, 24, 36 and 48 h) with immunocytochemistry and Western blot respectively when incubated with the cultured supernatant of silicotic AM exposed to SiO(2). The expression of PDGF was significantly different from the control group (P < 0.05). The synthesis and secretion of collagen in FB were increased markedly when incubated with the cultured supernatant of AM stimulated by SiO(2) compared with the control group.
CONCLUSIONSiO(2) may affect the expression of PDGF and synthesis of collagen through AM mediation and participate in the formation of lung fibrosis.
Cells, Cultured ; Collagen ; metabolism ; Fibroblasts ; drug effects ; metabolism ; Humans ; Macrophages, Alveolar ; drug effects ; metabolism ; Male ; Middle Aged ; Platelet-Derived Growth Factor ; metabolism ; Silicon Dioxide ; pharmacology
10.Effects of interferon-gamma on the transforming growth factor beta/Smad pathway in keloid-derived fibroblasts.
Jia-qi LIU ; Da-hai HU ; Zhan-feng ZHANG ; Hao GUAN ; Tao SHE ; Jun ZHANG ; Xiao-zhi BAI
Chinese Journal of Burns 2009;25(6):454-459
OBJECTIVETo elucidate the effects of interferon-gamma (IFN-gamma) on the transforming growth factor beta (TGF-beta)/Smad pathway in keloid-derived fibroblasts (KFb), and to investigate the underlying mechanism in the treatment of pathologic scar with IFN-gamma.
METHODSKeloid tissue of 3 patients were obtained, and then KFb were separated and cultured in vitro. KFb from passages 3 to 5 were used for the study. (1) KFb were divided into control group (incubated with serum-free DMEM), TGF-beta(1) group (treated with 10 ng/mL TGF-beta(1)), IFN-gamma group (treated with 100 ng/mL IFN-gamma), and TGF-beta(1)+IFN-gamma group (incubated with 10 ng/mL TGF-beta(1) combined with 100 ng/mL IFN-gamma). The expression level of mRNA and protein of connective tissue growth factor (CTGF), alpha smooth muscle actin (alpha-SMA) protein and expression of alpha-SMA positive KFb were detected by real-time fluorescent quantitation RT-PCR (FQ-RT-PCR), Western blot and immunofluorescence cytochemical staining. (2) Another sample of KFb was obtained and treated with 10 ng/mL IFN-gamma. The expression level of Smad 3 and Smad 7 protein was detected by Western blot before and 1, 2, 4, 6, 8 h post stimulation (PSH). The expression level of Smad 3 and Smad 7 mRNA was assessed by FQ-RT-PCR before stimulation and 30 mins post stimulation and at PSH, 1, 2, 4, 6, 8. (3) Another sample of KFb was obtained and divided into 1, 10 and 100 ng/mL IFN-gamma groups based on the concentration of IFN-gamma, treated for 4 hours; KFb without IFN-gamma treatment was set up as control group. The expression levels of the protein and mRNA of Smad 3 and Smad 7 were measured by FQ-RT-PCR and Western blot.
RESULTS(1) The level of mRNA and protein of CTGF in IFN-gamma group (0.017 +/- 0.009 and 1.198 +/- 0.004) was respectively lower than that in control group (0.024 +/- 0.013 and 1.229 +/- 0.011, P < 0.05). The level of mRNA and protein of CTGF in TGF-beta(1)+IFN-gamma group (0.634 +/- 0.138 and 1.204 +/- 0.010) was respectively lower than that in TGF-beta(1) group (1.331 +/- 0.298 and 1.727 +/- 0.004, P < 0.01). The fluorescence intensity of alpha-SMA positive KFb (0.922 +/- 0.059) and the expression level of alpha-SMA protein (0.3051 +/- 0.0031) in IFN-gamma group decreased significantly than those in control group (1.055 +/- 0.005 and 0.4513 +/- 0.0094, P < 0.01). The fluorescence intensity of alpha-SMA positive KFb (1.129 +/- 0.004) and the expression level of alpha-SMA protein (0.6734 +/- 0.0098) in TGF-beta(1)+IFN-gamma group decreased significantly than those in TGF-beta(1) group (1.270 +/- 0.005 and 1.3842 +/- 0.0024, P < 0.01). (2) The expression level of Smad 3 mRNA and protein at the first time point after IFN-gamma treatment increased temporarily then decreased gradually, and mRNA expression level reached the nadir at PSH 4, it rose gradually later, though it was still lower at PSH 8 than that before treatment (P < 0.01); protein expression level at PSH 8 was significantly lower than that before treatment (P < 0.01). The expression level of Smad 7 mRNA and protein increased gradually to the maximum at PSH 2 and 4 respectively, then decreased but was still higher at PSH 8 than that before treatment (P < 0.05). (3) Compared with those in control group, the expression levels of Smad 3 mRNA and protein in 1, 10 and 100 ng/mL IFN-gamma group were significantly lower, the expression levels of Smad 7 mRNA and protein were significantly higher (P < 0.05 or P < 0.01). The higher concentration of IFN-gamma, the more significant differences were observed.
CONCLUSIONSIFN-gamma can down-regulate the expression of Smad 3 while up-regulate the expression of Smad 7 in a time- and dose-dependent manner, and reduce the expression level of CTGF and alpha-SMA in the basic state or induced by TGF-beta(1), which shows a significant inhibitory effect on the TGF-beta/Smad signal pathway. This may be an important mechanism in the treatment of pathologic scar by IFN-gamma.
Cells, Cultured ; Fibroblasts ; drug effects ; metabolism ; Humans ; Interferon-gamma ; pharmacology ; Keloid ; metabolism ; RNA, Messenger ; genetics ; Signal Transduction ; drug effects ; Smad Proteins ; metabolism ; Transforming Growth Factor beta1 ; metabolism