1.Systemic comparison of molecular characteristics in different skin fibroblast senescent models.
Xiaokai FANG ; Shan ZHANG ; Mingyang WU ; Yang LUO ; Xingyu CHEN ; Yuan ZHOU ; Yu ZHANG ; Xiaochun LIU ; Xu YAO
Chinese Medical Journal 2025;138(17):2180-2191
BACKGROUND:
Senescent human skin primary fibroblast (FB) models have been established for studying aging-related, proliferative, and inflammatory skin diseases. The aim of this study was to compare the transcriptome characteristics of human primary dermal FBs from children and the elderly with four senescence models.
METHODS:
Human skin primary FBs were obtained from healthy children (FB-C) and elderly donors (FB-E). Senescence models were generated by ultraviolet B irradiation (FB-UVB), D-galactose stimulation (FB-D-gal), atazanavir treatment (FB-ATV), and replication exhaustion induction (FB-P30). Flow cytometry, immunofluorescence staining, real-time quantitative polymerase chain reaction, co-culturing with immune cells, and bulk RNA sequencing were used for systematic comparisons of the models.
RESULTS:
In comparison with FB-C, FB-E showed elevated expression of senescence-related genes related to the skin barrier and extracellular matrix, proinflammatory factors, chemokines, oxidative stress, and complement factors. In comparison with FB-E, FB-UVB and FB-ATV showed higher levels of senescence and expression of the genes related to the senescence-associated secretory phenotype (SASP), and their shaped immune microenvironment highly facilitated the activation of downstream immune cells, including T cells, macrophages, and natural killer cells. FB-P30 was most similar to FB-E in terms of general transcriptome features, such as FB migration and proliferation, and aging-related characteristics. FB-D-gal showed the lowest expression levels of senescence-related genes. In comparisons with the single-cell RNA sequencing results, FB-E showed almost complete simulation of the transcriptional spectrum of FBs in elderly patients with atopic dermatitis, followed by FB-P30 and FB-UVB. FB-E and FB-P30 showed higher similarity with the FBs in keloids.
CONCLUSIONS
Each senescent FB model exhibited different characteristics. In addition to showing upregulated expression of natural senescence features, FB-UVB and FB-ATV showed high expression levels of senescence-related genes, including those involved in the SASP, and FB-P30 showed the greatest similarity with FB-E. However, D-galactose-stimulated FBs did not clearly present aging characteristics.
Humans
;
Fibroblasts/drug effects*
;
Cellular Senescence/physiology*
;
Skin/metabolism*
;
Child
;
Transcriptome/genetics*
;
Aged
;
Ultraviolet Rays
;
Cells, Cultured
;
Galactose/pharmacology*
2.Mechanism of 4-methylcatechol in inhibiting fibroblast-like synoviocyte migration and suppressing inflammatory responses in treatment of rheumatoid arthritis.
Zhendong YING ; Peng WANG ; Lei ZHANG ; Dailing CHEN ; Qiuru WANG ; Qibin LIU ; Tiantian TANG ; Changjun CHEN ; Qingwei MA
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(8):1051-1060
OBJECTIVE:
To investigate the effects of 4-methylcatechol (4MC) on the migration and inflammatory response in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS), as well as its underlying mechanisms of action.
METHODS:
RA-FLS was isolated from synovial tissue donated by RA patients, and the optimal concentration of 4MC was determined by cell counting kit 8 method for subsequent experiments, and the effect of 4MC on the migratory ability of RA-FLS was evaluated via a cell scratch assay. An inflammation model of RA-FLS was induced by tumor necrosis factor α (TNF-α). Real-time fluorescence quantitative PCR and ELISA were employed to detect the gene and protein expression levels of interleukin-1β (IL-1β) and IL-6 in RA-FLS and their culture supernatants, respectively, thereby investigating the anti-inflammatory effects of 4MC. Western blot was used to examine the expressions of nuclear factor κB (NF-κB) signaling pathway-related proteins, including inhibitor of NF-κB-α (IKBα), phosphorylated (P)-IκBα, NF-κB-inducing kinase α (IKKα), P-IKKαβ, P-p65, and p65. Cellular immunofluorescence was utilized to detect the expression and localization of p65 in RA-FLS, exploring whether 4MC exerts its anti-inflammatory effects by regulating the NF-κB signaling pathway. Finally, a collagen-induced arthritis (CIA) mouse model was established. The anti-RA effect of 4MC in vivo was evaluated by gross observation and histological examination.
RESULTS:
4MC inhibited RA-FLS migration in a concentration-dependent manner. In the TNF-α-induced RA-FLS inflammation model, 4MC significantly decreased the gene and protein expression levels of IL-1β and IL-6. Furthermore, 4MC markedly reduced the ratios of P-IΚBα/IΚBα, P-IKKαβ/IKKα, and P-p65/p65, thereby blocking the transcriptional activity of p65 by inhibiting its nuclear translocation. This mechanism effectively suppressed the activation of the TNF-α-mediated NF-κB signaling pathway. Animal studies demonstrated that 4MC [10 mg/(kg·day)] significantly lowered serum levels of IL-1β, IL-6, and TNF-α, and alleviated arthritis severity and bone destruction in CIA mice.
CONCLUSION
4MC not only inhibits the migration of RA-FLS but also mitigates their inflammatory response by suppressing the NF-κB signaling pathway, thereby effectively exerting its anti-RA effects.
Synoviocytes/metabolism*
;
Arthritis, Rheumatoid/metabolism*
;
Animals
;
Cell Movement/drug effects*
;
Humans
;
Catechols/therapeutic use*
;
Fibroblasts/drug effects*
;
Mice
;
Tumor Necrosis Factor-alpha/pharmacology*
;
Interleukin-1beta/metabolism*
;
Interleukin-6/metabolism*
;
Signal Transduction/drug effects*
;
NF-kappa B/metabolism*
;
Transcription Factor RelA/metabolism*
;
Synovial Membrane/cytology*
;
Cells, Cultured
;
Male
;
Arthritis, Experimental
;
Anti-Inflammatory Agents/pharmacology*
;
NF-KappaB Inhibitor alpha
;
Inflammation
3.Study on the gene expression and regulation mechanisms of fibroblasts in acute inflammatory response.
Meng DU ; Hanjing LIAO ; Manjing HUANG ; Yaqin WANG ; Zongjie ZHAO ; Zhixiang ZHU ; Jun LI
Chinese Journal of Cellular and Molecular Immunology 2025;41(5):391-397
Objective To investigate the gene expression and regulatory mechanisms of mouse embryonic fibroblasts (MEFs) under inflammatory conditions, aiming to elucidate the role of MEFs in inflammatory responses and provide a foundation for discovering anti-inflammatory drugs that act by modulating MEF function. Methods MEFs cultured in vitro were divided into the following groups: lipopolysaccharides (LPS)-treated group, inflammatory conditioned medium (CM)-treated group, and control group, which were treated with LPS, CM, and equal volume solvent, respectively. Transcriptome sequencing was used to analyze the effects of two stimuli on gene expression profile of MEFs. Real time fluorescence quantitative PCR (RT-qPCR) was employed to verify the transcription levels of highly expressed genes of MEFs induced by CM. ELISA was performed to determine the concentrations of cytokines in cell supernatants. Finally, the regulatory effects of CM on the activation of signaling pathways in MEFs were analyzed by immunoblotting. Results Transcriptome analysis showed that both LPS and CM induced the transcription of a large number of genes in MEFs. Compared with LPS, CM potentiated the mRNA transcription of some acute phase proteins, inflammatory cytokines, chemokines, matrix metalloproteinases (MMP), prostaglandin synthetases, and colony-stimulating factors. The transcriptome analysis was verified by RT-qPCR. The results of ELISA showed that CM treatment significantly increased the secretion of interleukin 6 (IL-6), C-C motif chemokine ligand (CCL2), and C-X-C motif chemokine ligand (CXCL1) by MEFs compared with LPS. Mechanism study showed that both LPS and CM induced the phosphorylation of nuclear factor-κB p65 (NF-κB p65), p38 mitogen-activated protein kinase (p38 MAPK), extracellular regulated protein kinases 1/2 (ERK1/2), and TANK-binding kinase (TBK) in MEFs, and CM strongly stimulated the phosphorylation of signal transducer and activator of transcription 3 (STAT3) in MEFs. Conclusion Both LPS and CM can induce transcription and protein secretion of various inflammation-related genes in MEFs. CM can partly enhance LPS-induced activation of MEFs, and the mechanism may be related to the enhancement effect of CM on the activation STAT3 signaling pathway.
Animals
;
Fibroblasts/immunology*
;
Mice
;
Lipopolysaccharides/pharmacology*
;
Inflammation/metabolism*
;
Signal Transduction/drug effects*
;
Gene Expression Regulation/drug effects*
;
Cytokines/genetics*
;
Culture Media, Conditioned/pharmacology*
;
Cells, Cultured
4.Buyang Huanwu Decoction reduces mitochondrial autophagy in rheumatoid arthritis synovial fibroblasts in hypoxic culture by inhibiting the BNIP3-PI3K/Akt pathway.
Junping ZHAN ; Shuo HUANG ; Qingliang MENG ; Wei FAN ; Huimin GU ; Jiakang CUI ; Huilian WANG
Journal of Southern Medical University 2025;45(1):35-42
OBJECTIVES:
To investigate the role of the BNIP3-PI3K/Akt signaling pathway in mediating the inhibitory effect of Buyang Huanwu Decoction (BYHWT) on mitochondrial autophagy in human synovial fibroblasts from rheumatoid arthritis patients (FLS-RA) cultured under a hypoxic condition.
METHODS:
Forty normal Wistar rats were randomized into two groups (n=20) for daily gavage of BYHWT or distilled water for 7 days to prepare BYHWT-medicated or control sera. FLS-RA were cultured in routine condition or exposed to hypoxia (10% O2) for 24 h wigh subsequent treatment with IL-1β, followed by treatment with diluted BYHWT-medicated serum (5%, 10% and 20%) or control serum. AnnexinV-APC/7-AAD double staining and T-AOC kit were used for detecting apoptosis and total antioxidant capacity of the cells, and the changes in ROS, ATP level, mitochondrial membrane potential and Ca2+ homeostasis were analyzed. The changes in mRNA and protein expressions of BNIP3, PI3K and AKT and mRNA expressions of LC3, Beclin-1 and P62 were detected using RT-qPCR and Western blotting.
RESULTS:
Treatment with BYHWT-medicated serum dose-dependently lowered apoptosis rate of IL-1β-induced FLS-RA with hypoxic exposure. The treatment significantly decreased T-AOC concentration, increased ROS production, autophagosome formation and ATPase levels, and lowered mitochondrial membrane potential and Ca2+ level in the cells. In IL-1β-induced FLS-RA with hypoxic exposure, treatment with BYHWT-medicated serum significantly increased BNIP3 protein expression, decreased the protein expressions of PI3K and AKT, increased the mRNA expressions of BNIP3 and P62, and lowered the mRNA expressions of PI3K, AKT, LC3 and Beclin-1 without significantly affecting Beclin-1 protein expression. The cells treated with 5% and 10% BYHWT-medicated serum showed no significant changes in LC3 expression.
CONCLUSIONS
BYHWT inhibits mitochondrial autophagy in IL-1β-induced FLS-RA with hypoxic exposure possibly by inhibiting BNIP3-mediated PI3K/AKT signaling pathway.
Drugs, Chinese Herbal/pharmacology*
;
Arthritis, Rheumatoid/pathology*
;
Animals
;
Signal Transduction/drug effects*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Autophagy/drug effects*
;
Humans
;
Fibroblasts/cytology*
;
Rats, Wistar
;
Membrane Proteins/metabolism*
;
Rats
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Mitochondria/metabolism*
;
Cells, Cultured
;
Proto-Oncogene Proteins/metabolism*
;
Apoptosis/drug effects*
;
Cell Hypoxia
;
Synovial Membrane/cytology*
;
Male
;
Mitochondrial Proteins
5.Aloe-emodin inhibits scar tissue fibrosis through thrombospondin-1-PI3k-Akt pathway.
Hongbao GENG ; Xingyi ZHANG ; Siwei ZHOU ; Na LI ; Jia LIU ; Xuewei YUAN ; Chunliu NING ; Xudong ZHANG ; Wei HUANG
West China Journal of Stomatology 2025;43(5):636-647
OBJECTIVES:
To propose a hypothesis that aloe-emodin may inhibit scar tissue fibrosis through thrombospondin-1(THBS1)-PI3K-Akt pathway.
METHODS:
By cultivating fibroblasts derived from scar tissue after cleft palate surgery in humans, aloe emodin of different concentrations (10, 20, 30, 40 and 50 μmol/L) was added to the cells which activity was detected. At the same time, transcriptome sequencing was performed on scar tissue and cells, and bioinformatics methods were used to explore potential targets and signaling pathways of scar tissue fibrosis.
RESULTS:
Aloe-emodin had a concentration dependent inhibitory effect on fibroblast proliferation,with the 40 μmol/L concentration group showing the most significant effect. The results of tissue and cell sequencing indicated that differentially expressed genes were significantly enriched in extracellular matrix-receptor interaction pathway, and shared a common differential gene which was THBS1. The ORA analysis results indicated that differentially expressed genes, including THBS1, were significantly enriched in the PI3K-Akt signaling pathway.
CONCLUSIONS
Aloe emodin may inhibit the PI3K-Akt pathway by downregulating THBS1, thereby reducing the proliferation activity of fibroblasts derived from postoperative palatal scar tissue.
Thrombospondin 1/genetics*
;
Humans
;
Signal Transduction/drug effects*
;
Fibroblasts/cytology*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Fibrosis
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Cicatrix/metabolism*
;
Cell Proliferation/drug effects*
;
Anthraquinones/pharmacology*
;
Cells, Cultured
6.Triptolide inhibits inflammatory response and migration of fibroblast like synovial cells in rheumatoid arthritis through the circRNA 0003353/JAK2/STAT3 signaling pathway.
Jie WANG ; Jian LIU ; Jian Ting WEN ; Xin WANG
Journal of Southern Medical University 2022;42(3):367-374
OBJECTIVE:
To investigate the effect of triptolide (TPL) on inflammatory response and migration of fibroblast like synovial cells (FLS) in rheumatoid arthritis (RA-FLS) and the mechanism of circular noncoding RNA (circRNA) 0003353 for mediating this effect.
METHODS:
We collected peripheral blood mononuclear cells (PBMCs) and serum samples from 50 hospitalized RA patients and 30 healthy individuals for detecting the expression of circRNA 0003353, immune and inflammatory indexes (ESR, CRP, RF, anti-CCP, IgA, IgG, IgM, C3, and C4) and DAS28 score. Cultured RA-FLS was treated with 10 ng/mL TPL and transfected with a circRNA 0003353 overexpression plasmid, and cell counting kit-8 (CCK-8) assay and Transwell assay were used to detect the changes in the viability and migration of the cells. Enzyme-linked immunosorbent assay (ELISA) was used to examine the cytokines IL-4, IL-6, and IL-17, and real-time fluorescence quantitative PCR (RT-qPCR) was performed to detect the expression of circRNA 003353; Western blotting was used to detect the expressions of p-JAK2, pSTAT3, JAK2 and STAT3 proteins in the treated cells.
RESULTS:
The expression of circRNA 0003353 was significantly increased in PBMCs from RA patients and showed a good performance in assisting the diagnosis of RA (AUC=90.5%, P < 0.001, 95% CI: 0.83-0.98). CircRNA 0003353 expression was positively correlated with ESR, RF and DAS28 (P < 0.05). Treatment with TPL significantly decreased the expression of circRNA 0003353, suppressed the viability and migration ability, decreased the expressions of IL-6 and IL-17, and increased the expression IL-4 in cultured RA-FLS in a time-dependent manner (P < 0.01). TNF-α stimulation of RA-FLS significantly increased the ratios of p-JAK2/JAK2 and p-STAT3/STAT3, which were obviously lowered by TPL treatment (P < 0.01). TPL-treated RA-FLS overexpressing circRNA 0003353 showed significantly increased cell viability and migration ability with decreased IL-4 expression and increased IL-6 and IL-17 expressions and ratios of p-JAK2/ JAK2 and p-STAT3/STAT3 (P < 0.01).
CONCLUSION
The expression of circRNA 0003353 is increased in PBMCs in RA patients and in RA-FLS. TPL treatment can regulate JAK2/STAT3 signal pathway and inhibit the inflammatory response and migration of RA-FLS through circRNA 0003353.
Arthritis, Rheumatoid/pathology*
;
Cells, Cultured
;
Diterpenes/pharmacology*
;
Epoxy Compounds/pharmacology*
;
Fibroblasts/pathology*
;
Humans
;
Interleukin-17/metabolism*
;
Interleukin-4/metabolism*
;
Interleukin-6/metabolism*
;
Janus Kinase 2/metabolism*
;
Leukocytes, Mononuclear/metabolism*
;
Phenanthrenes/pharmacology*
;
RNA, Circular/metabolism*
;
STAT3 Transcription Factor/metabolism*
;
Signal Transduction/drug effects*
;
Synovial Membrane/pathology*
7.Salidroside Reduces PDE2A Expression by Down-regulating p53 in Human Embryonic Lung Fibroblasts.
Wen Min XING ; Sha Sha CHEN ; San Ying WANG ; Wen Yan GAO ; Xiao Qing WAN ; Hui Li SU ; Yi YANG ; Jing ZHANG ; Jing YAN ; Gen Xiang MAO
Biomedical and Environmental Sciences 2019;32(2):140-143
Cells, Cultured
;
Cyclic Nucleotide Phosphodiesterases, Type 2
;
antagonists & inhibitors
;
metabolism
;
Fibroblasts
;
drug effects
;
metabolism
;
Glucosides
;
pharmacology
;
Humans
;
Lung
;
cytology
;
embryology
;
Phenols
;
pharmacology
;
Phosphodiesterase Inhibitors
;
pharmacology
;
Tumor Suppressor Protein p53
;
metabolism
8.Adipogenic and Lipolytic Effects of Ascorbic Acid in Ovariectomized Rats
Byoungjae KIM ; Kyung Min CHOI ; Hong Soon YIM ; Hyun Tae PARK ; Joung Han YIM ; Min Goo LEE
Yonsei Medical Journal 2018;59(1):85-91
PURPOSE: Ascorbic acid has been reported to have an adipogenic effect on 3T3-L1 preadipocytes, while evidence also suggests that ascorbic acid reduces body weight in humans. In this study, we tested the effects of ascorbic acid on adipogenesis and the balance of lipid accumulation in ovariectomized rats, in addition to long-term culture of differentiated 3T3-L1 adipocytes. MATERIALS AND METHODS: Murine 3T3-L1 fibroblasts and ovariectomized rats were treated with ascorbic acid at various time points. In vitro adipogenesis was analyzed by Oil Red O staining, and in vivo body fat was measured by a body composition analyzer using nuclear magnetic resonance. RESULTS: When ascorbic acid was applied during an early time point in 3T3-L1 preadipocyte differentiation and after bilateral ovariectomy (OVX) in rats, adipogenesis and fat mass gain significantly increased, respectively. However, lipid accumulation in well-differentiated 3T3-L1 adipocytes showed a significant reduction when ascorbic acid was applied after differentiation (10 days after induction). Also, oral ascorbic acid administration 4 weeks after OVX in rats significantly reduced both body weight and subcutaneous fat layer. In comparison to the results of ascorbic acid, which is a well-known cofactor for an enzyme of collagen synthesis, and the antioxidant ramalin, a potent antioxidant but not a cofactor, showed only a lipolytic effect in well-differentiated 3T3-L1 adipocytes, not an adipogenic effect. CONCLUSION: Taking these results into account, we concluded that ascorbic acid has both an adipogenic effect as a cofactor of an enzymatic process and a lipolytic effect as an antioxidant.
3T3-L1 Cells
;
Adipocytes/drug effects
;
Adipocytes/metabolism
;
Adipogenesis/drug effects
;
Animals
;
Antioxidants/pharmacology
;
Ascorbic Acid/pharmacology
;
Body Composition/drug effects
;
Body Weight/drug effects
;
Cell Differentiation/drug effects
;
Female
;
Fibroblasts/drug effects
;
Fibroblasts/metabolism
;
Lipolysis/drug effects
;
Mice
;
Ovariectomy
;
Rats, Sprague-Dawley
9.A standardized extract of Asparagus officinalis stem prevents reduction in heat shock protein 70 expression in ultraviolet-B-irradiated normal human dermal fibroblasts: an in vitro study.
Ken SHIRATO ; Jun TAKANARI ; Tomoko KODA ; Takuya SAKURAI ; Junetsu OGASAWARA ; Hideki OHNO ; Takako KIZAKI
Environmental Health and Preventive Medicine 2018;23(1):40-40
BACKGROUND:
Heat shock protein 70 (HSP70) exhibits protective effects against ultraviolet (UV)-induced premature skin aging. A standardized extract of Asparagus officinalis stem (EAS) is produced as a novel and unique functional food that induces HSP70 cellular expression. To elucidate the anti-photoaging potencies of EAS, we examined its effects on HSP70 expression levels in UV-B-irradiated normal human dermal fibroblasts (NHDFs).
METHODS:
NHDFs were treated with 1 mg/mL of EAS or dextrin (vehicle control) prior to UV-B irradiation (20 mJ/cm). After culturing NHDFs for different time periods, HSP70 mRNA and protein levels were analyzed using real-time polymerase chain reaction and western blotting, respectively.
RESULTS:
UV-B-irradiated NHDFs showed reduced HSP70 mRNA levels after 1-6 h of culture, which were recovered after 24 h of culture. Treatment with EAS alone for 24 h increased HSP70 mRNA levels in the NHDFs, but the increase was not reflected in its protein levels. On the other hand, pretreatment with EAS abolished the UV-B irradiation-induced reduction in HSP70 expression at both mRNA and protein levels. These results suggest that EAS is capable to preserve HSP70 quantity in UV-B-irradiated NHDFs.
CONCLUSIONS
EAS exhibits anti-photoaging potencies by preventing the reduction in HSP70 expression in UV-irradiated dermal fibroblasts.
Asparagus Plant
;
Cells, Cultured
;
Female
;
Fibroblasts
;
drug effects
;
radiation effects
;
HSP70 Heat-Shock Proteins
;
biosynthesis
;
Humans
;
Middle Aged
;
Plant Extracts
;
pharmacology
;
Polymerase Chain Reaction
;
Skin
;
drug effects
;
radiation effects
;
Skin Aging
;
drug effects
;
radiation effects
;
Telomere
;
metabolism
;
Ultraviolet Rays
;
adverse effects
10.Osthole decreases collagen I/III contents and their ratio in TGF-β1-overexpressed mouse cardiac fibroblasts through regulating the TGF-β/Smad signaling pathway.
Jin-Cheng LIU ; Lei ZHOU ; Feng WANG ; Zong-Qi CHENG ; Chen RONG
Chinese Journal of Natural Medicines (English Ed.) 2018;16(5):321-329
The present study was designed to elucidate whether the mechanism by which osthole decreases collagenI/III contents and their ratio is regulating the TGF-β/Smad signaling pathway in TGF-β1-overexpressed mouse cardiac fibroblasts (CFs). These CFs were cultured and treated with different concentrations of osthole. Our results showed that the TGF-β1 expression in the CFs transfected with that the recombinant expression plasmids pcDNA3.1(+)-TGF-β1 was significantly enhanced. After the CFs were treated with 1.25-5 μg·mL of osthole for 24 h, the mRNA and protein expression levels of collagensIand III were reduced. The collagen I/III ratio was also reduced. The mRNA and protein expression levels of TGF-β1, TβRI, Smad2/3, P-Smad2/3, Smad4, and α-SMA were decreased, whereas the expression level of Smad7 was increased. These effects suggested that osthole could inhibit collagen I and III expression and reduce their ratio via the TGF-β/Smad signaling pathway in TGF-β1 overexpressed CFs. These effects of osthole may play beneficial roles in the prevention and treatment of myocardial fibrosis.
Actins
;
genetics
;
Animals
;
Cells, Cultured
;
Collagen
;
biosynthesis
;
genetics
;
Coumarins
;
pharmacology
;
Fibroblasts
;
drug effects
;
metabolism
;
Gene Expression Regulation
;
drug effects
;
Mice
;
Myocardium
;
cytology
;
Protein-Serine-Threonine Kinases
;
genetics
;
RNA, Messenger
;
genetics
;
Real-Time Polymerase Chain Reaction
;
Receptor, Transforming Growth Factor-beta Type I
;
Receptors, Transforming Growth Factor beta
;
genetics
;
Signal Transduction
;
drug effects
;
Smad Proteins
;
genetics
;
Transforming Growth Factor beta1
;
genetics

Result Analysis
Print
Save
E-mail